cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353875 a(n) is the minimal n-digit number which can be the length of a side of a Pythagorean triangle in the largest number of ways.

Original entry on oeis.org

5, 60, 840, 9240, 65520, 720720, 8168160, 98017920, 931170240, 9311702400, 80313433200, 931635825120, 9626903526240, 95492672074800, 890488576177200, 9973472053184640, 87624075895836480, 876240758958364800, 9419588158802421600, 99847634483305668960
Offset: 1

Views

Author

Zhining Yang, Jun 26 2022

Keywords

Examples

			a(2)=60 because 60 is the minimal 2-digit number which can be the length of a side of an integer-sided right triangle in 14 distinct ways, (11, 60, 61), (25, 60, 65), (32, 60, 68), (36, 48, 60), (45, 60, 75), (60, 63, 87), (60, 80, 100), (60, 91, 109), (60, 144, 156), (60, 175, 185), (60, 221, 229), (60, 297, 303), (60, 448, 452), (60, 899, 901), and 14 is the maximum number of such ways for a 2-digit number.
		

Crossrefs

Programs

  • Python
    from sympy import factorint
    def s(n):
        f=factorint(n)
        d, q=(list(f.keys()), list(f.values()))
        (a, b, c, x)=(0, 1, 1, 0)
        if(d[0]==2):
            a, x=(0, 1)
            if q[0]>1:
                 a=q[0]-1
        for p in range(x, len(d)):
            b*=(1+2*q[p])
            if d[p]%4==1:
                c*=(1+2*q[p])
        return((b-1)//2+a*b+(c-1)//2)
    def a(n):
        max=0
        for i in range(1+10**(n-1), 10**n):
            if s(i)>max:
                k,max=(i,s(i))
        return(n,[k,max])
    for i in range(1,6):
        print (a(i))