cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353898 a(n) is the number of divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Comments

First differs from A049599 and A282446 at n=32.

Examples

			The divisors of 8 are 1, 2 = 2^1, 4 = 2^2 and 8 = 2^3. 3 of these divisors, 1, 2 and 4, are in A138302. Therefore, a(8) = 3.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[Log2[e]] + 2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

Formula

Multiplicative with a(p^e) = floor(log_2(e)) + 2.
a(n) > 1 for n > 1 and a(n) = 2 if and only if n is a prime.
a(n) = A000005(n) if and only if n is cubefree (A004709).