A353937 Smallest b > 1 such that b^(p-1) == 1 (mod p^4) for p = prime(n).
17, 80, 182, 1047, 1963, 239, 4260, 2819, 19214, 2463, 15714, 51344, 20677, 3038, 224444, 189323, 11550, 397575, 201305, 15384, 840838, 1372873, 1576656, 278454, 1721322, 48072, 281007, 119551, 252595, 1001934, 3489507, 2489004, 598987, 3082551, 6136759, 3928984
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(j) local p,b,i; p:= ithprime(j); b:= numtheory:-primroot(p^4) &^ (p^3) mod p^4; min(seq(b &^i mod p^4, i=1..p-2)) end proc: f(1):= 17: map(f, [$1..40]); # Robert Israel, Dec 19 2024
-
Mathematica
a[n_] := Module[{p = Prime[n], b = 2}, While[PowerMod[b, p - 1, p^4] != 1, b++]; b]; Array[a, 20] (* Amiram Eldar, May 12 2022 *)
-
PARI
a(n) = my(p=prime(n)); for(b=2, oo, if(Mod(b, p^4)^(p-1)==1, return(b)))
-
Python
from sympy import prime from sympy.ntheory.residue_ntheory import nthroot_mod def A353937(n): return 2**4+1 if n == 1 else int(nthroot_mod(1,(p:= prime(n))-1,p**4,True)[1]) # Chai Wah Wu, May 17 2022