cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353937 Smallest b > 1 such that b^(p-1) == 1 (mod p^4) for p = prime(n).

Original entry on oeis.org

17, 80, 182, 1047, 1963, 239, 4260, 2819, 19214, 2463, 15714, 51344, 20677, 3038, 224444, 189323, 11550, 397575, 201305, 15384, 840838, 1372873, 1576656, 278454, 1721322, 48072, 281007, 119551, 252595, 1001934, 3489507, 2489004, 598987, 3082551, 6136759, 3928984
Offset: 1

Views

Author

Felix Fröhlich, May 12 2022

Keywords

Crossrefs

Row k = 4 of A257833.
Cf. similar sequences for p^k: A039678 (k=2), A249275 (k=3), A353938 (k=5), A353939 (k=6), A353940 (k=7), A353941 (k=8), A353942 (k=9), A353943 (k=10).

Programs

  • Maple
    f:= proc(j) local p,b,i;
      p:= ithprime(j);
      b:= numtheory:-primroot(p^4) &^ (p^3) mod p^4;
      min(seq(b &^i mod p^4, i=1..p-2))
    end proc:
    f(1):= 17:
    map(f, [$1..40]); # Robert Israel, Dec 19 2024
  • Mathematica
    a[n_] := Module[{p = Prime[n], b = 2}, While[PowerMod[b, p - 1, p^4] != 1, b++]; b]; Array[a, 20] (* Amiram Eldar, May 12 2022 *)
  • PARI
    a(n) = my(p=prime(n)); for(b=2, oo, if(Mod(b, p^4)^(p-1)==1, return(b)))
    
  • Python
    from sympy import prime
    from sympy.ntheory.residue_ntheory import nthroot_mod
    def A353937(n): return 2**4+1 if n == 1 else int(nthroot_mod(1,(p:= prime(n))-1,p**4,True)[1]) # Chai Wah Wu, May 17 2022