cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A384646 Expansion of (1+x) / (1-x-5*x^2-2*x^3).

Original entry on oeis.org

1, 2, 7, 19, 58, 167, 495, 1446, 4255, 12475, 36642, 107527, 315687, 926606, 2720095, 7984499, 23438186, 68800871, 201960799, 592841526, 1740247263, 5108376491, 14995295858, 44017672839, 129210905111, 379289861022, 1113379732255, 3268250847587, 9593729230906
Offset: 0

Views

Author

Sean A. Irvine, Jun 05 2025

Keywords

Comments

Number of walks of length n starting at vertex 0 in the following graph:
1---2
/|\ |
0 | \ |
\| \|
4---3.
Also, by symmetry, the number of walks of length n starting at vertex 2 in the same graph.

Examples

			a(2)=7 because we have the walks 0-1-0, 0-1-2, 0-1-3, 0-1-4, 0-4-0, 0-4-1, 0-4-3.
		

Crossrefs

Cf. A384647 (vertex 1), A384648 (vertices 3 and 4), A077937 (missing edge {1,3}).

Programs

  • Maple
    a:= n->  (<<0|1|0|0|1>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <1|1|0|1|0>>^n. <<1,1,1,1,1>>)[1,1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1+x) / (1-x-5*x^2-2*x^3), {x, 0, 32}], x]

Formula

a(n) = A353964(n)+A353964(n-1). - R. J. Mathar, Jun 07 2025

A353963 Triangle read by rows: T(n,k) = number of tilings of a n X k rectangle using 2 X 2 and 1 X 1 tiles and right trominoes, n >= 0, k=0..n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 13, 47, 1, 1, 45, 259, 3376, 1, 1, 122, 1189, 29683, 475962, 1, 1, 373, 5877, 311894, 9250945, 355724934, 1, 1, 1073, 28167, 3015423, 164776003, 12126673297, 777719132265, 1, 1, 3182, 136723, 30295051, 3051272172, 436744432876, 53090133270415, 6953251175836902
Offset: 0

Views

Author

Gerhard Kirchner, May 13 2022

Keywords

Comments

For tiling algorithm, see A351322.
Reading the sequence {T(n,k)} for k>n, use T(k,n) instead of T(n,k).

Examples

			Triangle begins
  n\k  0 1   2    3      4       5         6
  ------------------------------------------
  0:   1
  1:   1 1
  2:   1 1   6
  3:   1 1  13   47
  4:   1 1  45  259   3376
  5:   1 1 122 1189  29683  475962
  6:   1 1 373 5877 311894 9250945 355724934
		

Crossrefs

Row/columns 0..3 are A000012, A000012, A353964, A353965.
Main diagonal is A354067.

Programs

A353965 Number of tilings of a 3 X n rectangle using 2 X 2 and 1 X 1 tiles and right trominoes.

Original entry on oeis.org

1, 1, 13, 47, 259, 1189, 5877, 28167, 136723, 660173, 3194613, 15445007, 74699811, 361230229, 1746933205, 8448061879, 40854753875, 197572345789, 955455626773, 4620559362303, 22344915889827, 108059470995013, 522573007884725, 2527150465444071, 12221238828079379
Offset: 0

Views

Author

Gerhard Kirchner, May 13 2022

Keywords

Comments

For tiling algorithm see A351322.

Examples

			a(2) = 13:
    v    h,v   h=v   h,v
   ___   ___   ___   ___   ___
  |   | | |_| |  _| |  _| |_|_|    mirroring included
  |___| |___| |_| | |_|_| |_|_|    h: horizontal, v: vertical
  |_|_| |_|_| |___| |_|_| |_|_|
    2  +  4  +  2  +  4  +  1 = 13
		

Crossrefs

Programs

Formula

G.f.: (1 - 2*x + x^2) / (1 - 3*x - 9*x^2 + x^3 - 2*x^4).
a(n) = 3*a(n-1) + 9*a(n-2) - a(n-3) + 2*a(n-4).
31*a(n) = 18*(-2)^n +13*A200739(n+3) +2*A200739(n+2) +9*A200739(n+1). - R. J. Mathar, Jun 07 2025
Showing 1-3 of 3 results.