A353986 Numbers k such that Fibonacci(k) and Fibonacci(k+1) have the same binary weight (A000120).
1, 2, 4, 7, 24, 27, 49, 51, 52, 69, 75, 114, 130, 131, 158, 169, 186, 217, 250, 263, 292, 335, 340, 345, 374, 474, 500, 507, 520, 547, 565, 583, 600, 604, 627, 717, 760, 791, 828, 831, 908, 996, 997, 1011, 1023, 1061, 1081, 1114, 1242, 1641, 1660, 1763, 1780
Offset: 1
Examples
1 is a term since A011373(1) = A011373(2) = 1. 4 is a term since A011373(4) = A011373(5) = 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
s[n_] := s[n] = DigitCount[Fibonacci[n], 2, 1]; Select[Range[2000], s[#] == s[# + 1] &]
-
PARI
isok(k) = hammingweight(fibonacci(k)) == hammingweight(fibonacci(k+1)); \\ Michel Marcus, May 13 2022
-
Python
from itertools import islice def A353986_gen(): # generator of terms a, b, k, ah = 1, 1, 1, 1 while True: if ah == (bh := b.bit_count()): yield k a, b, ah = b, a+b, bh k += 1 A353986_list = list(islice(A353986_gen(),30)) # Chai Wah Wu, May 13 2022
Comments