A354004 Decimal expansion of Sum_{n>0} n^2 / (n^4 + 1).
1, 1, 2, 8, 5, 2, 7, 9, 2, 4, 7, 2, 4, 3, 1, 0, 0, 8, 5, 4, 1, 2, 0, 5, 8, 6, 3, 3, 7, 4, 9, 7, 2, 8, 4, 3, 3, 6, 8, 6, 4, 2, 6, 7, 9, 8, 3, 9, 2, 6, 8, 1, 8, 3, 4, 9, 5, 6, 6, 3, 3, 9, 4, 2, 2, 5, 6, 1, 2, 5, 5, 8, 8, 5, 9, 0, 5, 4, 1, 3, 4, 2, 5, 8, 5, 0, 5, 4, 1, 5, 0, 3, 2, 6, 0, 4
Offset: 1
Examples
1.12852792472431008541205863...
References
- Jean-Marie Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.3 pp. 249 and 444.
Programs
-
Maple
evalf(sum(n^2/(1+n^4),n=1..infinity),110); evalf(Pi*(sin(sqrt(2)*Pi) - sinh(sqrt(2)*Pi)) / (2*sqrt(2)*(cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))), 121); # Vaclav Kotesovec, May 16 2022
-
Mathematica
RealDigits[Re[Sum[n^2/(n^4 + 1), {n, 1, Infinity}]], 10, 100][[1]] (* Amiram Eldar, May 13 2022 *)
-
PARI
sumpos(n=1, n^2/(n^4 + 1)) \\ Michel Marcus, May 16 2022
Formula
Equals Pi*(sin(sqrt(2)*Pi) - sinh(sqrt(2)*Pi)) / (2*sqrt(2)*(cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))). - Vaclav Kotesovec, May 16 2022
Equals 1/2 + Sum_{j>=0} (-1)^j*Zeta(2+4*j) = 1/2 + A013661 - A013664 + A013668 -.... - R. J. Mathar, May 20 2022
Comments