A354043 Table read by rows: T(n, k) = (-1)^(n-k)*F(n, k)/k!, where F are the Faulhaber numbers A354042.
1, 0, 1, 0, 1, 1, 0, 4, 4, 1, 0, 36, 36, 10, 1, 0, 600, 600, 170, 20, 1, 0, 16584, 16584, 4720, 574, 35, 1, 0, 705600, 705600, 201040, 24640, 1568, 56, 1, 0, 43751232, 43751232, 12468960, 1531152, 98448, 3696, 84, 1, 0, 3790108800, 3790108800, 1080240480, 132713280, 8554896, 325152, 7812, 120, 1
Offset: 0
Examples
Table starts: [0] 1; [1] 0, 1; [2] 0, 1, 1; [3] 0, 4, 4, 1; [4] 0, 36, 36, 10, 1; [5] 0, 600, 600, 170, 20, 1; [6] 0, 16584, 16584, 4720, 574, 35, 1; [7] 0, 705600, 705600, 201040, 24640, 1568, 56, 1; [8] 0, 43751232, 43751232, 12468960, 1531152, 98448, 3696, 84, 1;
Links
- I. M. Gessel and X. G. Viennot, Determinants, Paths, and Plane Partitions, 1989 preprint.
Programs
-
Maple
T := (n, k) -> ifelse(n = 0, 1, (-1)^n*((n + 1)!/k!)*add(binomial(2*k - 2*j, k + 1)*binomial(2*n + 1, 2*j + 1)*bernoulli(2*n - 2*j) / (j - k), j = 0..(k-1)/2)): for n from 0 to 8 do seq(T(n, k), k = 0..n) od;
Comments