A354058 Square array read by ascending antidiagonals: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n.
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 5, 0, 3, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1
Offset: 1
Examples
n/k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 5 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 1 2 1 0 5 0 1 2 1 0 5 0 1 2 1 0 5 0 1 8 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 9 0 0 2 0 0 4 0 0 2 0 0 4 0 0 2 0 0 4 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 1 0 1 4 1 0 1 0 9 0 1 0 1 4 1 0 1 0 9 12 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 13 0 1 2 3 0 5 0 3 2 1 0 11 0 1 2 3 0 5 0 3 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 16 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 17 0 1 0 3 0 1 0 7 0 1 0 3 0 1 0 15 0 1 0 3 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 1 2 1 0 5 0 1 8 1 0 5 0 1 2 1 0 17 0 1 20 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3
Links
- Jianing Song, Table of n, a(n) for n = 1..5050 (the first 100 ascending diagonals)
Crossrefs
Programs
-
PARI
b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i])); T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))
Formula
For odd primes p: T(p,k) = gcd(p-1,k)-1, T(p^e,k*p^(e-1)) = p^(e-2)*(p-1)*gcd(k,p-1), T(p^e,k) = 0 if k is not divisible by p^(e-1). T(2,k) = 0, T(4,k) = 1 for even k and 0 for odd k, T(2^e,k) = 2^(e-2) if k is divisible by 2^(e-2) and 0 otherwise.
T(n,psi(n)) = A007431(n). - Jianing Song, May 24 2022
Comments