cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354060 Irregular table read by rows: T(n,k) is the number of solutions to x^k == 1 (mod n), 1 <= k <= psi(n), psi = A002322.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 3, 2, 1, 6, 1, 4, 1, 2, 3, 2, 1, 6, 1, 2, 1, 4, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 4, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 2, 1, 6, 1, 4, 1, 8, 1, 4, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Row n and Row n' are the same if and only if (Z/nZ)* = (Z/n'Z)*, where (Z/nZ)* is the multiplicative group of integers modulo m.
Given n, T(n,k) only depends on gcd(k,psi(n)).

Examples

			Table starts
n = 1: 1;
n = 2: 1;
n = 3: 1, 2;
n = 4: 1, 2;
n = 5: 1, 2, 1, 4;
n = 6: 1, 2;
n = 7: 1, 2, 3, 2, 1, 6;
n = 8: 1, 4;
n = 9: 1, 2, 3, 2, 1, 6;
n = 10: 1, 2, 1, 4;
n = 11: 1, 2, 1, 2, 5, 2, 1, 2, 1, 10;
n = 12: 1, 4;
n = 13: 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12;
n = 14: 1, 2, 3, 2, 1, 6;
n = 15: 1, 4, 1, 8;
n = 16: 1, 4, 1, 8;
n = 17: 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16;
n = 18: 1, 2, 3, 2, 1, 6;
n = 19: 1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 18;
n = 20: 1, 4, 1, 8;
...
		

Crossrefs

Programs

  • PARI
    T(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]))

Formula

If (Z/nZ)* = C_{k_1} X C_{k_2} X ... X C_{k_r}, then T(n,k) = Product_{i=1..r} gcd(k,k_r).
T(p^e,k) = gcd((p-1)*p^(e-1),k) for odd primes p. T(2,k) = 1, T(2^e,k) = 2*gcd(2^(e-2),k) if k is even and 1 if k is odd.