cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354086 11-gonal numbers which are products of four distinct primes.

Original entry on oeis.org

4785, 8170, 11526, 14421, 27105, 30710, 38595, 59110, 60146, 77946, 94105, 107570, 118990, 120458, 121935, 132526, 140361, 141955, 156706, 158390, 161785, 181101, 199606, 203415, 213095, 215058, 217030, 221001, 243485, 249806, 267058, 287155, 298635, 303290
Offset: 1

Views

Author

Massimo Kofler, Jun 08 2022

Keywords

Comments

A squarefree subsequence of 11-gonal numbers, i.e., numbers of the form k*(9*k-7)/2.

Examples

			4785 = 33*(9*33-7)/2 = 3*5*11*29.
30710 = 83*(9*83-7)/2 = 2*5*37*83.
140361 = 177*(9*177-7)/2 = 3*13*59*61.
303290 = 260*(9*260-7)/2 = 2*5*13*2333.
		

Crossrefs

Intersection of A051682 and A046386.

Programs

  • Maple
    q:= n-> is(map(x-> x[2], ifactors(n)[2])=[1$4]):
    select(q, [n*(9*n-7)/2$n=1..300])[];  # Alois P. Heinz, Jun 15 2022
  • Mathematica
    Select[Table[n*(9*n - 7)/2, {n, 1, 300}], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1} &] (* Amiram Eldar, Jun 08 2022 *)