cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354090 a(n) = A007947(n)^(A051904(n) - 1), where A007947 is squarefree kernel and A051904 is minimum prime exponent.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 9, 1, 1, 1, 1, 16, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{f = FactorInteger[n], e}, e = Min[f[[;; , 2]]] - 1; f[[;; , 2]] = e; Times @@ Power @@@ f]; Array[a, 100] (* Amiram Eldar, Feb 12 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A051904(n) = if((1==n),0,vecmin(factor(n)[, 2]));
    A354090(n) = (A007947(n)^(A051904(n)-1));
    
  • PARI
    a(n) = {if(n==1, 1, my(f = factor(n), e = vecmin(f[,2]) - 1); prod(i = 1, #f~, f[i,1]^e));} \\ Amiram Eldar, Feb 12 2023

Formula

a(n) = A007947(n)^(A051904(n)-1).
a(n) = n / A304776(n).