cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354099 The 3-adic valuation of Euler totient function phi.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0, 1, 1, 2, 2, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 2, 0, 2, 1, 1, 1, 0, 3, 0, 0, 1, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 2, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Cf. A088232 (positions of zeros), A066498 (of terms > 0).
Cf. also A354100.

Programs

  • Mathematica
    a[n_] := IntegerExponent[EulerPhi[n], 3]; Array[a, 100] (* Amiram Eldar, May 17 2022 *)
  • PARI
    A354099(n) = valuation(eulerphi(n),3);
    
  • PARI
    A354099(n) = { my(f=factor(n)); sum(k=1,#f~,valuation((f[k,1]-1)*(f[k,1]^(f[k,2]-1)), 3)); }; \\ Demonstrates the additivity.

Formula

a(n) = A007949(A000010(n)).
Additive with a(p^e) = A007949((p-1)*p^(e-1)).