cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354100 The 3-adic valuation of sigma, sum of divisors function.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 2, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 0, 1, 2, 0, 2, 1, 3, 1, 0, 0, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 0, 3, 1, 2, 1, 0, 2, 1, 1, 0, 1, 0, 0, 1, 2, 0, 2, 1, 2, 2, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 2, 2, 2, 0, 1, 0, 2, 1, 2, 0, 2, 1, 0, 1, 3, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Cf. A329963 (positions of zeros), A087943 (of terms > 0).
Cf. also A336937, A354099.

Programs

  • Mathematica
    a[n_] := IntegerExponent[DivisorSigma[1, n], 3]; Array[a, 100] (* Amiram Eldar, May 18 2023 *)
  • PARI
    A354100(n) = valuation(sigma(n),3);
    
  • PARI
    A354100(n) = { my(f=factor(n)); sum(k=1,#f~,valuation(((f[k,1]^(f[k,2]+1))-1)/(f[k,1]-1), 3)); }; \\ Demonstrates the additivity

Formula

a(n) = A007949(A000203(n)).
Additive with a(p^e) = A007949((p^(e+1)-1)/(p-1)).