A267099 Fully multiplicative involution swapping the positions of 4k+1 and 4k+3 primes: a(1) = 1; a(prime(k)) = A267101(k), a(x*y) = a(x)*a(y) for x, y > 1.
1, 2, 5, 4, 3, 10, 13, 8, 25, 6, 17, 20, 7, 26, 15, 16, 11, 50, 29, 12, 65, 34, 37, 40, 9, 14, 125, 52, 19, 30, 41, 32, 85, 22, 39, 100, 23, 58, 35, 24, 31, 130, 53, 68, 75, 74, 61, 80, 169, 18, 55, 28, 43, 250, 51, 104, 145, 38, 73, 60, 47, 82, 325, 64, 21, 170, 89, 44, 185, 78, 97, 200, 59, 46, 45, 116, 221, 70, 101
Offset: 1
Links
Crossrefs
Programs
-
PARI
up_to = 2^16; A267097list(up_to) = { my(v=vector(up_to),i=0,c=0); forprime(p=2,prime(up_to), if(1==(p%4), c++); i++; v[i] = c); (v); }; v267097 = A267097list(up_to); A267097(n) = v267097[n]; A267098(n) = ((n-1)-A267097(n)); list_primes_of_the_form(up_to,m,k) = { my(v=vector(up_to),i=0); forprime(p=2,, if(k==(p%m), i++; v[i] = p; if(i==up_to,return(v)))); }; v002144 = list_primes_of_the_form(2*up_to,4,1); A002144(n) = v002144[n]; v002145 = list_primes_of_the_form(2*up_to,4,3); A002145(n) = v002145[n]; A267101(n) = if(1==n,2,if(1==(prime(n)%4),A002145(A267097(n)),A002144(A267098(n)))); A267099(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A267101(primepi(f[k,1]))); factorback(f); }; \\ Antti Karttunen, May 18 2022 (Scheme, with memoization-macro definec) (definec (A267099 n) (cond ((<= n 1) n) ((= 1 (A010051 n)) (A267101 (A000720 n))) (else (* (A267099 (A020639 n)) (A267099 (A032742 n))))))
Formula
Extensions
Verbal description prefixed to the name by Antti Karttunen, May 19 2022
Comments