A354109 Numbers that are neither an odd prime power nor twice an odd prime power.
1, 2, 4, 8, 12, 15, 16, 20, 21, 24, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 51, 52, 55, 56, 57, 60, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93, 95, 96, 99, 100, 102, 104, 105, 108, 110, 111, 112, 114, 115, 116, 117, 119, 120, 123, 124, 126, 128, 129, 130, 132, 133, 135
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
q[n_] := ! (OddQ[n] && PrimePowerQ[n]) && ! (OddQ[n/2] && PrimePowerQ[n/2]); Select[Range[135], q] (* Amiram Eldar, May 20 2022 *)
-
PARI
A354108(n) = (A353768(n) == A353768(A267099(n))); A354108(n) = ((n && !bitand(n,n-1)) || !isprimepower(n/(2-(n%2)))); isA354109(n) = A354108(n);
-
Python
from sympy import primepi, integer_nthroot def A354109(n): def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length()))+sum(primepi(integer_nthroot(x>>1,k)[0])-1 for k in range(1,x.bit_length()-1))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Feb 25 2025
Comments