cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354109 Numbers that are neither an odd prime power nor twice an odd prime power.

Original entry on oeis.org

1, 2, 4, 8, 12, 15, 16, 20, 21, 24, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 51, 52, 55, 56, 57, 60, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93, 95, 96, 99, 100, 102, 104, 105, 108, 110, 111, 112, 114, 115, 116, 117, 119, 120, 123, 124, 126, 128, 129, 130, 132, 133, 135
Offset: 1

Views

Author

Antti Karttunen, May 18 2022

Keywords

Comments

Terms (1, 2, 4) followed by A033949, positive integers that do not have a primitive root.
Also numbers n for which A353768(n) and A353768(A267099(n)) are equal. Proof: if n is an odd prime power or twice such a number, then the odd prime factor in A267099(n) is in the opposite side of 4k+1 / 4k+3 divide of that of the odd prime factor of n, and subtracting one from it will give a number of the form 4k+0 in the other case, and 4k+2 in the other case, and either 4k != 4k+2 (mod 4) when the prime factor is unitary, or then 4k*(4k+1) != (4k+2)*(4k+3) (mod 4), when the odd prime has exponent > 1, so none of such n occur in this sequence. On the other hand, if n has more than two distinct odd prime factors, p and q, then (p-1)(q-1) == 0 (mod 4), or if n is a multiple of 4, then as phi(4) = 2 and phi(2^k) == 0 (mod 4) for k > 2, and with (p-1) giving at least one instance of factor 2, then both A267099(n) and n are guaranteed to be multiples of 4, regardless of whether p (and q) is (are) of the form 4k+1 or 4k+3.

Crossrefs

Cf. A033949, A353768, A267099, A354107, A354108 (characteristic function), A354189 (subsequence).

Programs

  • Mathematica
    q[n_] := ! (OddQ[n] && PrimePowerQ[n]) && ! (OddQ[n/2] && PrimePowerQ[n/2]); Select[Range[135], q] (* Amiram Eldar, May 20 2022 *)
  • PARI
    A354108(n) = (A353768(n) == A353768(A267099(n)));
    A354108(n) = ((n && !bitand(n,n-1)) || !isprimepower(n/(2-(n%2))));
    isA354109(n) = A354108(n);
    
  • Python
    from sympy import primepi, integer_nthroot
    def A354109(n):
        def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length()))+sum(primepi(integer_nthroot(x>>1,k)[0])-1 for k in range(1,x.bit_length()-1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Feb 25 2025

Formula

{k | A353768(k) == A354107(k)}.