A354127 Triangle read by rows: T(n, k) is the number of graphs obtained by adding k pierced circles to a path graph P_n.
1, 1, 0, 2, 2, 0, 12, 10, 3, 0, 82, 82, 28, 4, 0, 646, 738, 315, 60, 5, 0, 5574, 7198, 3636, 900, 110, 6, 0, 51386, 74086, 43225, 13020, 2135, 182, 7, 0, 498026, 793490, 524784, 185920, 37940, 4452, 280, 8, 0, 5019720, 8761906, 6475959, 2634912, 642180, 95508, 8442, 408, 9, 0
Offset: 0
Examples
The triangle begins 1; 1, 0; 2, 2, 0; 12, 10, 3, 0; 82, 82, 28, 4, 0; 646, 738, 315, 60, 5, 0; ...
Links
- Nicholas Owad and Anastasiia Tsvietkova, Random meander model for links, arXiv:2205.03451 [math.GT], 2022.
Crossrefs
Programs
-
Mathematica
bigO[k_,s_]:=Binomial[2s-k-1,k]CatalanNumber[s-k]^2; T[n_,k_]:=Sum[(-1)^(m+k)Binomial[m,k]bigO[m,n],{m,k,n}];Flatten[Table[T[n,k],{n,0,9},{k,0,n}]]
Formula
T(n, k) = Sum_{m=k..n} (-1)^(m+k)*binomial(m, k)*O(m, n), with O(k, s) = binomial(2*s-k-1, k)*C(s-k)^2 (see Lemma 3.3 at page 7 in Owad and Tsvietkova).
T(n, n-2) = A006331(n-1).