A354139 a(n) is the least positive integer m such that (k+1)^n + (k+2)^n + ... + (k+m)^n == 0 (mod n) for every positive integer k.
1, 4, 3, 8, 5, 36, 7, 16, 3, 20, 11, 72, 13, 28, 15, 32, 17, 108, 19, 200, 21, 44, 23, 144, 5, 52, 3, 56, 29, 180, 31, 64, 33, 68, 35, 216, 37, 76, 39, 400, 41, 1764, 43, 88, 15, 92, 47, 288, 7, 20, 51, 104, 53, 324, 55, 112, 57, 116, 59, 1800, 61, 124, 21, 128, 65, 396, 67, 136, 69, 140, 71
Offset: 1
Keywords
Examples
a(2) = 4 because, for every positive integer k, (k+1)^2 + (k+2)^2 + (k+3)^2 + (k+4)^2 == 0 (mod 2), and no smaller positive integer satisfies this condition.
Programs
-
Mathematica
sum[n_, r_] := Mod[Sum[k^r, {k, 1, n}], r]; rad[r_] := Product[i[[1]], {i, FactorInteger[r]}]; seq[r_] := Table[sum[n, r], {n, 1, r*rad[r]}]; A354139[r_] := Piecewise[ { {rad[r], OddQ[r]}, {2*r, EvenQ[r] && PrimePowerQ[r]}, {Length[FindRepeat[seq[r]]], EvenQ[r] && Not[PrimePowerQ[r]]} } ]; Table[A354139[r], {r, 1, 20}] (* Improved by Dimitrios T. Tambakos, Feb 08 2023 *)
-
PARI
isok(k, n) = my(p=sum(i=1, k, Mod(i+x, n)^n)); if (p==0, return(1)); for (i=1, n, if (subst(p, x, i) != 0, return(0))); return(1); a(n) = my(k=1); while (!isok(k,n), k++); k; \\ Michel Marcus, May 21 2022
Comments