cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354139 a(n) is the least positive integer m such that (k+1)^n + (k+2)^n + ... + (k+m)^n == 0 (mod n) for every positive integer k.

Original entry on oeis.org

1, 4, 3, 8, 5, 36, 7, 16, 3, 20, 11, 72, 13, 28, 15, 32, 17, 108, 19, 200, 21, 44, 23, 144, 5, 52, 3, 56, 29, 180, 31, 64, 33, 68, 35, 216, 37, 76, 39, 400, 41, 1764, 43, 88, 15, 92, 47, 288, 7, 20, 51, 104, 53, 324, 55, 112, 57, 116, 59, 1800, 61, 124, 21, 128, 65, 396, 67, 136, 69, 140, 71
Offset: 1

Views

Author

Dimitrios T. Tambakos, May 18 2022

Keywords

Comments

a(n) divides n * A007947(n).

Examples

			a(2) = 4 because, for every positive integer k, (k+1)^2 + (k+2)^2 + (k+3)^2 + (k+4)^2 == 0 (mod 2), and no smaller positive integer satisfies this condition.
		

Programs

  • Mathematica
    sum[n_, r_] := Mod[Sum[k^r, {k, 1, n}], r];
    rad[r_] := Product[i[[1]], {i, FactorInteger[r]}];
    seq[r_] := Table[sum[n, r], {n, 1, r*rad[r]}];
    A354139[r_] := Piecewise[   {    {rad[r], OddQ[r]},
        {2*r, EvenQ[r] && PrimePowerQ[r]},
        {Length[FindRepeat[seq[r]]], EvenQ[r] && Not[PrimePowerQ[r]]}
        }
       ];
    Table[A354139[r], {r, 1, 20}] (* Improved by Dimitrios T. Tambakos, Feb 08 2023 *)
  • PARI
    isok(k, n) = my(p=sum(i=1, k, Mod(i+x, n)^n)); if (p==0, return(1)); for (i=1, n, if (subst(p, x, i) != 0, return(0))); return(1);
    a(n) = my(k=1); while (!isok(k,n), k++); k; \\ Michel Marcus, May 21 2022

Formula

a(2^t) = 2^(t+1) for integers t>0.
a(n) = A007947(n) for odd integers n.
Conjecture: a(n) = A007947(n) * A193267(n).