cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354178 Numbers whose number of divisors is coprime to 30.

Original entry on oeis.org

1, 64, 729, 1024, 4096, 15625, 46656, 59049, 65536, 117649, 262144, 531441, 746496, 1000000, 1771561, 2985984, 3779136, 4194304, 4826809, 7529536, 9765625, 11390625, 16000000, 24137569, 34012224, 43046721, 47045881, 47775744, 60466176, 64000000, 85766121, 113379904
Offset: 1

Views

Author

Amiram Eldar, May 18 2022

Keywords

Comments

Numbers k such that gcd(d(k), 30) = 1, where d(k) is the number of divisors of k (A000005).
All the terms are squares since their number of divisors is odd.

Examples

			64 is a term since A000005(64) = 7 and gcd(7, 30) = 1.
		

Crossrefs

Subsequence of other sequences of numbers k such that gcd(d(k), m) = 1: A000290 (m=2), A336590 (m=3), A352475 (m=6).

Programs

  • Mathematica
    Select[Range[10^4]^2, CoprimeQ[DivisorSigma[0, #], 30] &]
  • PARI
    isok(k) = gcd(numdiv(k), 30) == 1;
    for(k=1, 10650, if(isok(k^2), print1(k^2,", ")))

Formula

a(n) = A354179(n)^2.
The number of terms <= x is (zeta(5)*zeta(5/3))/(zeta(4)*zeta(10/3))*x^(1/6) + (zeta(3)*zeta(3/5))/(zeta(2)*zeta(12/5))*x^(1/10) + O(x^(1/20 + eps)) for all eps > 0 (Hilberdink, 2022).
Sum_{n>=1} 1/a(n) = Product_{p prime} (p^2 + p^8 + p^12 + p^14 + p^18 + p^20 + p^24 + p^30)/(p^30 - 1) = 1.0183538548...