A354179 Numbers whose square has a number of divisors that is coprime to 30.
1, 8, 27, 32, 64, 125, 216, 243, 256, 343, 512, 729, 864, 1000, 1331, 1728, 1944, 2048, 2197, 2744, 3125, 3375, 4000, 4913, 5832, 6561, 6859, 6912, 7776, 8000, 9261, 10648, 10976, 12167, 13824, 15552, 15625, 16384, 16807, 17576, 19683, 21952, 23328, 24389, 25000
Offset: 1
Keywords
Examples
8 is a term since A000005(8^2) = 7 and gcd(7, 30) = 1.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 1709 terms from Amiram Eldar)
- Index entries for sequences computed from exponents in factorization of n.
Programs
-
Mathematica
Select[Range[25000], CoprimeQ[DivisorSigma[0, #^2], 30] &]
-
PARI
isok(m) = gcd(numdiv(m^2), 30) == 1; \\ Michel Marcus, May 19 2022
Formula
a(n) = sqrt(A354178(n)).
Sum_{n>=1} 1/a(n) = Product_{p prime} (p + p^4 + p^6 + p^7 + p^9 + p^10 + p^12 + p^15)/(p^15 - 1) = 1.2449394393...
Comments