cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354178 Numbers whose number of divisors is coprime to 30.

Original entry on oeis.org

1, 64, 729, 1024, 4096, 15625, 46656, 59049, 65536, 117649, 262144, 531441, 746496, 1000000, 1771561, 2985984, 3779136, 4194304, 4826809, 7529536, 9765625, 11390625, 16000000, 24137569, 34012224, 43046721, 47045881, 47775744, 60466176, 64000000, 85766121, 113379904
Offset: 1

Views

Author

Amiram Eldar, May 18 2022

Keywords

Comments

Numbers k such that gcd(d(k), 30) = 1, where d(k) is the number of divisors of k (A000005).
All the terms are squares since their number of divisors is odd.

Examples

			64 is a term since A000005(64) = 7 and gcd(7, 30) = 1.
		

Crossrefs

Subsequence of other sequences of numbers k such that gcd(d(k), m) = 1: A000290 (m=2), A336590 (m=3), A352475 (m=6).

Programs

  • Mathematica
    Select[Range[10^4]^2, CoprimeQ[DivisorSigma[0, #], 30] &]
  • PARI
    isok(k) = gcd(numdiv(k), 30) == 1;
    for(k=1, 10650, if(isok(k^2), print1(k^2,", ")))

Formula

a(n) = A354179(n)^2.
The number of terms <= x is (zeta(5)*zeta(5/3))/(zeta(4)*zeta(10/3))*x^(1/6) + (zeta(3)*zeta(3/5))/(zeta(2)*zeta(12/5))*x^(1/10) + O(x^(1/20 + eps)) for all eps > 0 (Hilberdink, 2022).
Sum_{n>=1} 1/a(n) = Product_{p prime} (p^2 + p^8 + p^12 + p^14 + p^18 + p^20 + p^24 + p^30)/(p^30 - 1) = 1.0183538548...

A358250 Numbers whose square has a number of divisors coprime to 210.

Original entry on oeis.org

1, 32, 64, 243, 256, 512, 729, 2048, 3125, 6561, 7776, 15552, 15625, 16384, 16807, 19683, 23328, 32768, 46656, 62208, 100000, 117649, 124416, 161051, 177147, 186624, 200000, 209952, 262144, 371293, 373248, 390625, 419904, 497664, 500000, 537824, 629856, 759375
Offset: 1

Views

Author

Michael De Vlieger, Dec 03 2022

Keywords

Comments

210 is the product of the smallest 4 primes.
Numbers k such that gcd(d(k^2), 210) = 1, where d(k) is the number of divisors of k (A000005).
Also numbers with no exponents = 1 mod 3, 2 mod 5, or 3 mod 7; also numbers whose square has a number of divisors coprime to 105. - Charles R Greathouse IV, Dec 08 2022

Crossrefs

Subsequence of A069492 and hence of A036967, A036966, and A001694.
Subsequence of other sequences of numbers k such that gcd(d(k^2), m) = 1: A350014 (m=6), A354179 (m=30).

Programs

  • Mathematica
    With[{nn = 2^20}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], CoprimeQ[DivisorSigma[0, #^2], 210] &]]
  • PARI
    is(n,f=factor(n))=if(n<32, return(n==1)); my(t=f[,2]%105, N=19200959813818273241621521446046); for(i=1,#t, if(bittest(N,t[i]), return(0))); 1 \\ Charles R Greathouse IV, Dec 08 2022

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (Sum_{k=2..210, gcd(k-1,210)=1} p^(k/2))/(p^105-1) = 1.05981355805... . - Amiram Eldar, Dec 06 2022
Showing 1-2 of 2 results.