cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354204 a(n) = phi(A354202(n)), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)).

Original entry on oeis.org

1, 4, 6, 20, 12, 24, 10, 100, 42, 48, 18, 120, 16, 40, 72, 500, 28, 168, 22, 240, 60, 72, 30, 600, 156, 64, 294, 200, 36, 288, 42, 2500, 108, 112, 120, 840, 40, 88, 96, 1200, 52, 240, 46, 360, 504, 120, 58, 3000, 110, 624, 168, 320, 60, 1176, 216, 1000, 132, 144, 66, 1440, 72, 168, 420, 12500, 192, 432, 70, 560, 180
Offset: 1

Views

Author

Antti Karttunen, May 23 2022

Keywords

Crossrefs

Möbius transform of A354202.

Programs

  • PARI
    A354200(n) = if(1==n,5,my(p=prime(n), m=p%4); forprime(q=1+p,,if(m==(q%4),return(q))));
    A354204(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354200(primepi(f[k,1]))); eulerphi(factorback(f)); };
    \\ Alternatively:
    A354204v2(n) = { my(f=factor(n),q); prod(k=1,#f~,q = A354200(primepi(f[k,1])); (q-1)*(q^(f[k,2]-1))); };

Formula

Multiplicative with a(p^e) = (q-1) * q^(e-1), where q = A354200(A000720(p)).
a(n) = A000010(A354202(n)).
a(n) = Sum_{d|n} A008683(n/d) * A354202(d).