cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A354203 Fully multiplicative with a(p^e) = A354201(A000720(p))^e.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 7, 1, 5, 3, 2, 1, 13, 1, 11, 2, 3, 7, 19, 1, 4, 5, 1, 3, 17, 2, 23, 1, 7, 13, 6, 1, 29, 11, 5, 2, 37, 3, 31, 7, 2, 19, 43, 1, 9, 4, 13, 5, 41, 1, 14, 3, 11, 17, 47, 2, 53, 23, 3, 1, 10, 7, 59, 13, 19, 6, 67, 1, 61, 29, 4, 11, 21, 5, 71, 2, 1, 37, 79, 3, 26, 31, 17, 7, 73, 2, 15, 19, 23
Offset: 1

Views

Author

Antti Karttunen, May 23 2022

Keywords

Crossrefs

Left inverse of A354202.

Programs

  • PARI
    A354201(n) = if(n<=3,(n+1)\2,my(m=prime(n)%4); forstep(i=n-1,0,-1,if(m==(prime(i)%4),return(prime(i)))));
    A354203(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354201(primepi(f[k,1]))); factorback(f); };

A354205 a(n) = sigma(A354202(n)), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)).

Original entry on oeis.org

1, 6, 8, 31, 14, 48, 12, 156, 57, 84, 20, 248, 18, 72, 112, 781, 30, 342, 24, 434, 96, 120, 32, 1248, 183, 108, 400, 372, 38, 672, 44, 3906, 160, 180, 168, 1767, 42, 144, 144, 2184, 54, 576, 48, 620, 798, 192, 60, 6248, 133, 1098, 240, 558, 62, 2400, 280, 1872, 192, 228, 68, 3472, 74, 264, 684, 19531, 252, 960, 72
Offset: 1

Views

Author

Antti Karttunen, May 23 2022

Keywords

Crossrefs

Cf. A000203, A000290 (positions of odd terms), A000720, A354200, A354202, A354204, A354206.
Cf. A003973, A354089, A354093 for variants.

Programs

  • PARI
    A354200(n) = if(1==n,5,my(p=prime(n), m=p%4); forprime(q=1+p,,if(m==(q%4),return(q))));
    A354205(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354200(primepi(f[k,1]))); sigma(factorback(f)); };
    \\ Alternatively:
    A354205(n) = sumdiv(n,d,A354202(d));

Formula

Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = A354200(A000720(p)).
a(n) = A000203(A354202(n)).
a(n) = Sum_{d|n} A354202(d).

A354207 a(n) = n - A354203(sigma(A354202(n))), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)), and A354203 is its left inverse.

Original entry on oeis.org

0, 1, 2, -19, 2, 5, 6, 3, -2, 7, 9, -11, 12, 13, 12, -453, 15, 7, 18, -49, 20, 20, 22, 19, -28, 25, 23, 5, 18, 27, 24, -37, 31, 32, 32, -217, 34, 37, 38, 25, 40, 41, 42, -2, 12, 45, 45, -421, 16, -3, 49, 29, 30, 50, 49, 51, 56, 47, 46, -9, 32, 55, 52, -19443, 62, 64, 66, 22, 68, 67, 69, 17, 71, 71, 22, 53, 75, 77, 76
Offset: 1

Views

Author

Antti Karttunen, May 23 2022

Keywords

Crossrefs

Programs

  • PARI
    A354200(n) = if(1==n,5,my(p=prime(n), m=p%4); forprime(q=1+p,,if(m==(q%4),return(q))));
    A354201(n) = if(n<=3,(n+1)\2,my(m=prime(n)%4); forstep(i=n-1,0,-1,if(m==(prime(i)%4),return(prime(i)))));
    A354202(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354200(primepi(f[k,1]))); factorback(f); };
    A354203(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A354201(primepi(f[k,1]))); factorback(f); };
    A354207(n) = (n-A354203(sigma(A354202(n))));

Formula

a(n) = n - A354206(n).

A354361 Numbers k such that A354203(sigma(A354202(k))) = 1.

Original entry on oeis.org

1, 2, 3, 6, 7, 13, 14, 19, 21, 23, 26, 38, 39, 41, 42, 43, 46, 57, 67, 69, 78, 82, 86, 91, 103, 107, 114, 123, 129, 133, 134, 138, 161, 179, 182, 201, 206, 214, 246, 247, 258, 266, 273, 287, 299, 301, 309, 321, 322, 358, 379, 399, 402, 419, 437, 469, 483, 494, 533, 537, 546, 559, 574, 598, 602, 618, 642, 643, 721
Offset: 1

Views

Author

Antti Karttunen, May 24 2022

Keywords

Comments

Applying A354202 and sorting into ascending order gives A354357.

Crossrefs

Positions of ones in A354206.

Programs

Showing 1-4 of 4 results.