cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354212 Numbers k such that A297330(k)*k and k have the same digits but in a different order.

Original entry on oeis.org

11688, 116688, 126888, 1166688, 1266888, 11666688, 12446778, 12666888, 116666688, 123456789, 124466778, 126666888
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, May 19 2022

Keywords

Comments

Contains all numbers of the forms 116...688, 12446...6778, and 126...6888 (with at least one 6).
All terms are divisible by 3.

Examples

			a(1) = 11688 is a term because A297330(11688) = 7 and 7*11688 = 81816 has the same digits as 11688 in a different order.
		

Crossrefs

Cf. A297330.

Programs

  • Maple
    filter:= proc(n) local L,m;
      L:= convert(n,base,10);
      m:= convert(map(abs,L[2..-1]-L[1..-2]),`+`);
      if m = 1 then return false fi;
      sort(L) = sort(convert(m*n,base,10))
    end proc:
    select(filter, [seq(i,i=3..10^7,3)]);
  • PARI
    f(n) = my(d=digits(n)); sum(i=2, #d, if (d[i]d[i-1], d[i]-d[i-1])); \\ A297330
    isok(k) = my(d=digits(k), dd = digits(k*f(k))); (d != dd) && vecsort(d) == vecsort(dd); \\ Michel Marcus, May 19 2022
    
  • Python
    from itertools import count, islice
    def A354212_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            s = str(n)
            t = str(n*sum(abs(int(s[i])-int(s[i+1])) for i in range(len(s)-1)))
            if s != t and sorted(s) == sorted(t):
                yield n
    A354212_list = list(islice(A354212_gen(),5)) # Chai Wah Wu, May 31 2022