A354236 A(n,k) is the n-th number m such that the Collatz (or 3x+1) trajectory starting at m contains exactly k odd integers; square array A(n,k), n>=1, k>=1, read by antidiagonals.
1, 5, 2, 3, 10, 4, 17, 6, 20, 8, 11, 34, 12, 21, 16, 7, 22, 35, 13, 40, 32, 9, 14, 23, 68, 24, 42, 64, 25, 18, 15, 44, 69, 26, 80, 128, 33, 49, 19, 28, 45, 70, 48, 84, 256, 43, 65, 50, 36, 29, 46, 75, 52, 85, 512, 57, 86, 66, 51, 37, 30, 88, 136, 53, 160, 1024
Offset: 1
Examples
Square array A(n,k) begins: 1, 5, 3, 17, 11, 7, 9, 25, 33, 43, ... 2, 10, 6, 34, 22, 14, 18, 49, 65, 86, ... 4, 20, 12, 35, 23, 15, 19, 50, 66, 87, ... 8, 21, 13, 68, 44, 28, 36, 51, 67, 89, ... 16, 40, 24, 69, 45, 29, 37, 98, 130, 172, ... 32, 42, 26, 70, 46, 30, 38, 99, 131, 173, ... 64, 80, 48, 75, 88, 56, 72, 100, 132, 174, ... 128, 84, 52, 136, 90, 58, 74, 101, 133, 177, ... 256, 85, 53, 138, 92, 60, 76, 102, 134, 178, ... 512, 160, 96, 140, 93, 61, 77, 196, 260, 179, ...
Links
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; irem(n, 2, 'r')+ `if`(n=1, 0, b(`if`(n::odd, 3*n+1, r))) end: A:= proc() local h, p, q; p, q:= proc() [] end, 0; proc(n, k) if k=1 then return 2^(n-1) fi; while nops(p(k))
-
Mathematica
b[n_] := b[n] = Module[{q, r}, {q, r} = QuotientRemainder[n, 2]; r + If[n == 1, 0, b[If[OddQ[n], 3*n + 1, q]]]]; A = Module[{h, p, q}, p[_] = {}; q = 0; Function[{n, k}, If[k == 1, 2^(n - 1)]; While[Length[p[k]] < n, q = q + 1; h = b[q]; p[h] = Append[p[h], q]]; p[k][[n]]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Jun 02 2022, after Alois P. Heinz *)
Formula
A078719(A(n,k)) = k.