cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A354258 Earliest occurrence of n in A354257.

Original entry on oeis.org

1, 3, 9, 16, 25, 36, 49, 32, 27, 75, 121, 144, 169, 147, 225, 64, 289, 108, 361, 400, 441, 363, 529, 288, 125, 507, 81, 784, 841, 900, 961, 128, 1089, 867, 1225, 432, 1369, 1083, 1521, 800, 1681, 1764, 1849, 1936, 675, 1587, 2209, 576, 343, 375, 2601, 2704
Offset: 1

Views

Author

Jianing Song, May 21 2022

Keywords

Comments

a(n) is odd if and only if n is odd or n == 2, 10 (mod 12).
a(n) = n^2 if and only if: (a) n is odd or n == 6 (mod 12), and n is squarefree; or (b) n is 4 times an odd squareefree number.

Crossrefs

Programs

  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    a(n) = n*rad(n)*if(n%2 || n%12==6, 1, if(n%12==2 || n%12==10, 3/4, 2))

Formula

a(n) = n * rad(n) if n is odd or n == 6 (mod 12); (3/4) * n * rad(n) if n == 2, 10 (mod 12); 2 * n * rad(n) if n is divisible by 4, where rad = A007947.

A354270 Numbers k such that min{m: A354257(m) = k} = k^2.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 11, 12, 13, 15, 17, 19, 20, 21, 23, 28, 29, 30, 31, 33, 35, 37, 39, 41, 42, 43, 44, 47, 51, 52, 53, 55, 57, 59, 60, 61, 65, 66, 67, 68, 69, 71, 73, 76, 77, 78, 79, 83, 84, 85, 87, 89, 91, 92, 93, 95, 97, 101, 102, 103, 105, 107, 109, 111, 113
Offset: 1

Views

Author

Jianing Song, May 21 2022

Keywords

Comments

Numbers m such that A354258(k) = k^2.
Consists of the union of {squarefree numbers that are odd or congruent to 6 modulo 12} U {4 times odd squarefree numbers}.
The maximum run length of consecutive numbers is 5, and they are of the form 24*m+3..24*m+7 or 24*m+17..24*m+21.

Examples

			3..7 are terms since the first 3, 4, 5, 6 or 7 in A354257 occur at the 9th, the 16th, the 25th, the 36th or the 49th places respectively.
65..69 are terms since the first 65, 66, 67, 68 or 69 in A354257 occur at the 4225th, the 4356th, the 4489th, the 4624th or the 4761st places respectively.
		

Crossrefs

Programs

  • PARI
    isA354270(n) = ((n%2 || n%12==6) && issquarefree(n)) || (n%8==4 && issquarefree(n/4))

A354058 Square array read by ascending antidiagonals: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 5, 0, 3, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Given n, T(n,k) only depends on gcd(k,psi(n)). For the truncated version see A354061.
Each column is multiplicative.
The n-th rows contains entirely 0's if and only if n == 2 (mod 4).
For n !== 2 (mod 4), T(n,psi(n)) > T(n,k) if k is not divisible by psi(n).
Proof: this is true if n is a prime power (see the formula below). Now suppose that n = Product_{i=1..r} (p_i)^(e_i). Since n !== 2 (mod 4), (p_i)^(e_i) != 2, so T((p_i)^(e_i),psi((p_i)^(e_i))) > 0 for each i. If k is not divisible by psi(n), then it is not divisible by some psi((p_{i_0})^(e_{i_0})), so T(n,psi(n)) = Product_{i=1..r} T((p_i)^(e_i),psi(n)) = Product_{i=1..r} T((p_i)^(e_i),psi((p_i)^(e_i))) > T((p_{i_0})^(e_{i_0}),k) * Product_{i!=i_0} T((p_i)^(e_i),psi((p_i)^(e_i))) >= Product_{i=1..r} T((p_i)^(e_i),k) = T(n,k).

Examples

			  n/k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
   1   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   2   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
   3   0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
   4   0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
   5   0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3
   6   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
   7   0  1  2  1  0  5  0  1  2  1  0  5  0  1  2  1  0  5  0  1
   8   0  2  0  2  0  2  0  2  0  2  0  2  0  2  0  2  0  2  0  2
   9   0  0  2  0  0  4  0  0  2  0  0  4  0  0  2  0  0  4  0  0
  10   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  11   0  1  0  1  4  1  0  1  0  9  0  1  0  1  4  1  0  1  0  9
  12   0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
  13   0  1  2  3  0  5  0  3  2  1  0 11  0  1  2  3  0  5  0  3
  14   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  15   0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3
  16   0  0  0  4  0  0  0  4  0  0  0  4  0  0  0  4  0  0  0  4
  17   0  1  0  3  0  1  0  7  0  1  0  3  0  1  0 15  0  1  0  3
  18   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  19   0  1  2  1  0  5  0  1  8  1  0  5  0  1  2  1  0 17  0  1
  20   0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3
		

Crossrefs

k-th column: A114643 (k=2), A160498 (k=3), A160499 (k=4), A307380 (k=5), A307381 (k=6), A307382 (k=7), A329272 (k=8).
Moebius transform of A354057 applied to each column.
A354257 gives the smallest index for the nonzero terms in each row.
Cf. A007431.

Programs

  • PARI
    b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
    T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))

Formula

For odd primes p: T(p,k) = gcd(p-1,k)-1, T(p^e,k*p^(e-1)) = p^(e-2)*(p-1)*gcd(k,p-1), T(p^e,k) = 0 if k is not divisible by p^(e-1). T(2,k) = 0, T(4,k) = 1 for even k and 0 for odd k, T(2^e,k) = 2^(e-2) if k is divisible by 2^(e-2) and 0 otherwise.
T(n,psi(n)) = A007431(n). - Jianing Song, May 24 2022

A354061 Irregular table read by rows: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n, 1 <= k <= psi(n), psi = A002322.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 0, 0, 1, 2, 1, 0, 5, 0, 2, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 1, 4, 1, 0, 1, 0, 9, 0, 1, 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Given n, T(n,k) only depends on gcd(k,psi(n)).
The n-th row contains entirely 0's if and only if n == 2 (mod 4).
If n !== 2 (mod 4), T(n,psi(n)) > T(n,k) for 1 <= k < psi(n).

Examples

			Table starts
n = 1: 1;
n = 2: 0;
n = 3: 0, 1;
n = 4: 0, 1;
n = 5: 0, 1, 0, 3;
n = 6: 0, 0;
n = 7: 0, 1, 2, 1, 0, 5;
n = 8: 0, 2;
n = 9: 0, 0, 2, 0, 0, 4;
n = 10: 0, 0, 0, 0;
n = 11: 0, 1, 0, 1, 4, 1, 0, 1, 0, 9;
n = 12: 0, 1;
n = 13: 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11;
n = 14: 0, 0, 0, 0, 0, 0;
n = 15: 0, 1, 0, 3;
n = 16: 0, 0, 0, 4;
n = 17: 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15;
n = 18: 0, 0, 0, 0, 0, 0;
n = 19: 0, 1, 2, 1, 0, 5, 0, 1, 8, 1, 0, 5, 0, 1, 2, 1, 0, 17;
n = 20: 0, 1, 0, 3;
...
		

Crossrefs

A354257 gives the smallest index for the nonzero terms in each row.

Programs

  • PARI
    b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
    T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))

Formula

For odd primes p: T(p,k) = gcd(p-1,k)-1, T(p^e,k*p^(e-1)) = p^(e-2)*(p-1)*gcd(k,p-1), T(p^e,k) = 0 if k is not divisible by p^(e-1). T(2,k) = 0, T(4,k) = 1 for even k and 0 for odd k, T(2^e,k) = 2^(e-2) if k is divisible by 2^(e-2) and 0 otherwise.
T(n,psi(n)) = A007431(n). - Jianing Song, May 24 2022
Showing 1-4 of 4 results.