A354258
Earliest occurrence of n in A354257.
Original entry on oeis.org
1, 3, 9, 16, 25, 36, 49, 32, 27, 75, 121, 144, 169, 147, 225, 64, 289, 108, 361, 400, 441, 363, 529, 288, 125, 507, 81, 784, 841, 900, 961, 128, 1089, 867, 1225, 432, 1369, 1083, 1521, 800, 1681, 1764, 1849, 1936, 675, 1587, 2209, 576, 343, 375, 2601, 2704
Offset: 1
-
rad(n) = factorback(factorint(n)[, 1]);
a(n) = n*rad(n)*if(n%2 || n%12==6, 1, if(n%12==2 || n%12==10, 3/4, 2))
A354270
Numbers k such that min{m: A354257(m) = k} = k^2.
Original entry on oeis.org
1, 3, 4, 5, 6, 7, 11, 12, 13, 15, 17, 19, 20, 21, 23, 28, 29, 30, 31, 33, 35, 37, 39, 41, 42, 43, 44, 47, 51, 52, 53, 55, 57, 59, 60, 61, 65, 66, 67, 68, 69, 71, 73, 76, 77, 78, 79, 83, 84, 85, 87, 89, 91, 92, 93, 95, 97, 101, 102, 103, 105, 107, 109, 111, 113
Offset: 1
3..7 are terms since the first 3, 4, 5, 6 or 7 in A354257 occur at the 9th, the 16th, the 25th, the 36th or the 49th places respectively.
65..69 are terms since the first 65, 66, 67, 68 or 69 in A354257 occur at the 4225th, the 4356th, the 4489th, the 4624th or the 4761st places respectively.
A354058
Square array read by ascending antidiagonals: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 5, 0, 3, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1
Offset: 1
n/k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
5 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 1 2 1 0 5 0 1 2 1 0 5 0 1 2 1 0 5 0 1
8 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
9 0 0 2 0 0 4 0 0 2 0 0 4 0 0 2 0 0 4 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 1 0 1 4 1 0 1 0 9 0 1 0 1 4 1 0 1 0 9
12 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
13 0 1 2 3 0 5 0 3 2 1 0 11 0 1 2 3 0 5 0 3
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3
16 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
17 0 1 0 3 0 1 0 7 0 1 0 3 0 1 0 15 0 1 0 3
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 1 2 1 0 5 0 1 8 1 0 5 0 1 2 1 0 17 0 1
20 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3
Moebius transform of
A354057 applied to each column.
A354257 gives the smallest index for the nonzero terms in each row.
-
b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))
A354061
Irregular table read by rows: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n, 1 <= k <= psi(n), psi = A002322.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 0, 0, 1, 2, 1, 0, 5, 0, 2, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 1, 4, 1, 0, 1, 0, 9, 0, 1, 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15
Offset: 1
Table starts
n = 1: 1;
n = 2: 0;
n = 3: 0, 1;
n = 4: 0, 1;
n = 5: 0, 1, 0, 3;
n = 6: 0, 0;
n = 7: 0, 1, 2, 1, 0, 5;
n = 8: 0, 2;
n = 9: 0, 0, 2, 0, 0, 4;
n = 10: 0, 0, 0, 0;
n = 11: 0, 1, 0, 1, 4, 1, 0, 1, 0, 9;
n = 12: 0, 1;
n = 13: 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11;
n = 14: 0, 0, 0, 0, 0, 0;
n = 15: 0, 1, 0, 3;
n = 16: 0, 0, 0, 4;
n = 17: 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15;
n = 18: 0, 0, 0, 0, 0, 0;
n = 19: 0, 1, 2, 1, 0, 5, 0, 1, 8, 1, 0, 5, 0, 1, 2, 1, 0, 17;
n = 20: 0, 1, 0, 3;
...
A354257 gives the smallest index for the nonzero terms in each row.
-
b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))
Showing 1-4 of 4 results.
Comments