A354265 Array read by ascending antidiagonals for n >= 0 and k >= 0. Generalized Lucas numbers, L(n, k) = (psi^(k - 1)*(phi + n) - phi^(k - 1)*(psi + n)), where phi = (1 + sqrt(5))/2 and psi = (1 - sqrt(5))/2.
2, 3, 1, 4, 4, 3, 5, 7, 7, 4, 6, 10, 11, 11, 7, 7, 13, 15, 18, 18, 11, 8, 16, 19, 25, 29, 29, 18, 9, 19, 23, 32, 40, 47, 47, 29, 10, 22, 27, 39, 51, 65, 76, 76, 47, 11, 25, 31, 46, 62, 83, 105, 123, 123, 76, 12, 28, 35, 53, 73, 101, 134, 170, 199, 199, 123
Offset: 0
Examples
Array starts: [0] 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... A000032 [1] 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, ... A000032 (shifted) [2] 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, ... A000032 (shifted) [3] 5, 10, 15, 25, 40, 65, 105, 170, 275, 445, ... A022088 [4] 6, 13, 19, 32, 51, 83, 134, 217, 351, 568, ... A022388 [5] 7, 16, 23, 39, 62, 101, 163, 264, 427, 691, ... A190995 [6] 8, 19, 27, 46, 73, 119, 192, 311, 503, 814, ... A206420 [7] 9, 22, 31, 53, 84, 137, 221, 358, 579, 937, ... A206609 [8] 10, 25, 35, 60, 95, 155, 250, 405, 655, 1060, ... [9] 11, 28, 39, 67, 106, 173, 279, 452, 731, 1183, ...
Links
- Peter Luschny, The Fibonacci Function.
Programs
-
Julia
const FibMem = Dict{Int,Tuple{BigInt,BigInt}}() function FibRec(n::Int) get!(FibMem, n) do n == 0 && return (BigInt(0), BigInt(1)) a, b = FibRec(div(n, 2)) c = a * (b * 2 - a) d = a * a + b * b iseven(n) ? (c, d) : (d, c + d) end end function Lucas(n, k) k == 0 && return BigInt(n + 2) k == -1 && return BigInt(2 * n - 1) k < 0 && return (-1)^k * Lucas(1 - n, -k - 2) a, b = FibRec(k) c, d = FibRec(k - 1) n * (2 * a + b) + 2 * c + d end for n in -6:6 println([Lucas(n, k) for k in -6:6]) end
-
Maple
phi := (1 + sqrt(5))/2: psi := (1 - sqrt(5))/2: L := (n, k) -> phi^(k+1)*(n - psi) + psi^(k+1)*(n - phi): seq(seq(simplify(L(n-k, k)), k = 0..n), n = 0..10);
-
Mathematica
L[n_, k_] := With[{c = Pi/2 + I*ArcCsch[2]}, I^k Sec[c] (n Cos[c (k + 1)] - I Cos[c k]) ]; Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm (* Alternative: *) L[n_, k_] := n*LucasL[k + 1] + LucasL[k]; Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm
Formula
Functional equation extends Cassini's theorem:
L(n, k) = (-1)^k*L(1 - n, -k - 2).
L(n, k) = n*Lucas(k + 1) + Lucas(k).
L(n, k) = L(n, k-1) + L(n, k-2).
L(n, k) = i^k*sec(c)*(n*cos(c*(k + 1)) - i*cos(c*k)), where c = Pi/2 + i*arccsch(2), for all n, k in Z.
Using the generalized Fibonacci numbers F(n, k) = A352744(n, k),
L(n, k) = F(n, k+1) + F(n, k) + F(n, k-1) + F(n, k-2).
Comments