cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A371870 a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-k-1,n-2*k).

Original entry on oeis.org

1, 1, 4, 14, 51, 189, 709, 2683, 10220, 39130, 150438, 580328, 2245004, 8705686, 33828704, 131688362, 513445147, 2004688605, 7836832057, 30670416703, 120153739079, 471143251989, 1848978071615, 7261781367389, 28540427527441, 112243216215879, 441693646453729
Offset: 0

Views

Author

Seiichi Manyama, Apr 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n-k-1, n-2*k));

Formula

a(n) = [x^n] 1/((1-x-x^2) * (1-x)^(n-1)).
a(n) ~ 4^n / sqrt(Pi*n). - Vaclav Kotesovec, Apr 16 2024
a(n) = A354267(2*n, n). - Peter Luschny, Apr 25 2024
Showing 1-1 of 1 results.