cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354271 Irregular array of the prime numbers read by rows.

Original entry on oeis.org

2, 3, 2, 5, 7, 3, 11, 2, 5, 13, 17, 3, 11, 19, 2, 7, 23, 17, 29, 5, 13, 31, 7, 37, 3, 11, 19, 29, 41, 2, 5, 13, 43, 17, 47, 3, 11, 23, 41, 53, 2, 7, 37, 59, 31, 61, 5, 13, 23, 43, 67, 7, 19, 29, 37, 59, 71, 3, 11, 41, 73, 2, 5, 17, 47, 79, 19, 31, 53, 71, 83, 3, 67
Offset: 1

Views

Author

Tamas Sandor Nagy, May 22 2022

Keywords

Comments

The construction of the array is made in an orthogonal grid with columns and rows.
Along the sloping upper boundary of the array are written the guiding prime numbers, each in a column of its value and in a row of its index. From these leading entries, on downward and leftward running antidiagonal lines the preceding primes are entered. In reverse order and with the due prime gaps, these will fall into the columns of their own value, below the guiding primes on top.
The antidiagonals are the same as the rows of the triangle in A037126.
The rows that begin with 2's end with A256491.
Row n lists all primes of the form A000040(n - k) - k for positive k. - Thomas Scheuerle, May 23 2022

Examples

			.  2
.  .  3
.  2  .  .  5
.  .  .  .  .  .  7
.  .  3  .  .  .  .  .  .  . 11
.  2  .  .  5  .  .  .  .  .  .  . 13
.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
.  .  3  .  .  .  .  .  .  . 11  .  .  .  .  .  .  . 19
.  2  .  .  .  .  7  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17  .  .  .  .  .  .
.  .  .  .  5  .  .  .  .  .  .  . 13  .  .  .  .  .  .  .  .  .  .
.  .  .  .  .  .  7  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
.  .  3  .  .  .  .  .  .  . 11  .  .  .  .  .  .  . 19  .  .  .  .
.  2  .  .  5  .  .  .  .  .  .  . 13  .  .  .  .  .  .  .  .  .  .
.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17  .  .  .  .  .  .
.  .  3  .  .  .  .  .  .  . 11  .  .  .  .  .  .  .  .  .  .  . 23
.  2  .  .  .  .  7  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
		

Crossrefs

Programs

  • MATLAB
    function a = A354271( max_row )
        p = primes(max_row*floor(2*max_row*log(max_row)));
        a = [];
        for r = 1:max_row
            row = p(1:r)-(r-1:-1:0);
            row = row(isprime(max(row,0)) > 0);
            a = [a row];
        end
    end % Thomas Scheuerle, May 23 2022
  • Mathematica
    Table[Select[Array[Prime[#] - (n - #) &, n], And[# > 0, PrimeQ[#]] &], {n, 24}] // Flatten (* Michael De Vlieger, May 25 2022 *)
    (* Extract data from the bitmap: set k to number of rows desired, up to 1024 *)
    k = 120; Map[Prime /@ Position[#, 0.][[All, 1]] &, ImageData[Import["https://oeis.org/A354271/a354271_2.png"]][[1 ;; k]] ] // Flatten (* Michael De Vlieger, May 25 2022 *)