cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354285 Numbers k such that one of k, k+1, k+2 is prime and the other two are semiprimes, and one of R(n), R(n+1), R(n+2) is prime and the other two are semiprimes, where R = A004086.

Original entry on oeis.org

4, 157, 177, 1381, 1437, 7417, 9661, 9901, 12757, 15297, 15681, 16921, 35961, 36901, 39777, 75741, 77277, 93097, 94441, 103317, 108201, 111261, 117541, 121377, 127597, 128461, 128901, 130197, 134677, 146841, 147417, 151377, 156601, 160077, 165441, 166861, 169177, 178537, 185901, 187881, 306541
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, May 29 2022

Keywords

Comments

All terms after the first == 1 (mod 4).

Examples

			a(3) = 177 is a term because 177 = 3*59 and 178 = 2*89 are semiprimes, 179 is prime, 771 = 3*257 and 871 = 13*67 are semiprimes and 971 is prime.
		

Crossrefs

Cf. A004086.

Programs

  • Maple
    revdigs:= proc(n) local i,L;
      L:= convert(n,base,10);
      add(10^(i-1)*L[-i],i=1..nops(L))
    end proc:
    f:= proc(n) uses numtheory;
          if not isprime((n+1)/2) then return false fi;
          if n mod 3 = 0 then if not(isprime(n/3) and isprime(n+2)) then return false fi
          elif n mod 3 = 2 then return false
          elif not(isprime(n) and isprime((n+2)/3)) then return false
          fi;
          sort(map(bigomega@revdigs,[n,n+1,n+2]))=[1,2,2]
    end proc:
    f(4):= true:
    select(f, [4, seq(i,i=5..10^6,4)]);
  • Mathematica
    Select[Range[300000], Sort[PrimeOmega[# + {0, 1, 2}]] == Sort[PrimeOmega[IntegerReverse[# + {0, 1, 2}]]] == {1, 2, 2} &] (* Amiram Eldar, May 29 2022 *)