A354285 Numbers k such that one of k, k+1, k+2 is prime and the other two are semiprimes, and one of R(n), R(n+1), R(n+2) is prime and the other two are semiprimes, where R = A004086.
4, 157, 177, 1381, 1437, 7417, 9661, 9901, 12757, 15297, 15681, 16921, 35961, 36901, 39777, 75741, 77277, 93097, 94441, 103317, 108201, 111261, 117541, 121377, 127597, 128461, 128901, 130197, 134677, 146841, 147417, 151377, 156601, 160077, 165441, 166861, 169177, 178537, 185901, 187881, 306541
Offset: 1
Examples
a(3) = 177 is a term because 177 = 3*59 and 178 = 2*89 are semiprimes, 179 is prime, 771 = 3*257 and 871 = 13*67 are semiprimes and 971 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A004086.
Programs
-
Maple
revdigs:= proc(n) local i,L; L:= convert(n,base,10); add(10^(i-1)*L[-i],i=1..nops(L)) end proc: f:= proc(n) uses numtheory; if not isprime((n+1)/2) then return false fi; if n mod 3 = 0 then if not(isprime(n/3) and isprime(n+2)) then return false fi elif n mod 3 = 2 then return false elif not(isprime(n) and isprime((n+2)/3)) then return false fi; sort(map(bigomega@revdigs,[n,n+1,n+2]))=[1,2,2] end proc: f(4):= true: select(f, [4, seq(i,i=5..10^6,4)]);
-
Mathematica
Select[Range[300000], Sort[PrimeOmega[# + {0, 1, 2}]] == Sort[PrimeOmega[IntegerReverse[# + {0, 1, 2}]]] == {1, 2, 2} &] (* Amiram Eldar, May 29 2022 *)
Comments