cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A356596 Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k)^(1/k!) )^exp(x).

Original entry on oeis.org

1, 1, 5, 25, 162, 1231, 10988, 109481, 1220005, 14915924, 198841997, 2861122716, 44290863499, 731732469209, 12865489418525, 239613961313353, 4712991199268122, 97557259778360215, 2120682504988009054, 48270952330701285107, 1148400573894718809487
Offset: 0

Views

Author

Seiichi Manyama, Aug 15 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-x^k)^(1/k!))^exp(x)))
    
  • PARI
    a354338(n) = n!*sum(k=1, n, sumdiv(k, d, 1/(d*(k/d)!))/(n-k)!);
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a354338(j)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A354338(k) * binomial(n-1,k-1) * a(n-k).
Showing 1-1 of 1 results.