A354347 Dirichlet inverse of A345000, where A345000(n) = gcd(A003415(n), A003415(A276086(n))), with A003415 the arithmetic derivative, and A276086 the primorial base exp-function.
1, -1, -1, -1, -1, 1, -1, -1, 0, 1, -1, 1, -1, 1, 1, -9, -1, -2, -1, 1, -3, 1, -1, 1, -4, -3, 0, 1, -1, -1, -1, 21, 1, 1, -1, -6, -1, 1, 1, 3, -1, 7, -1, -1, 0, -3, -1, 23, 0, 4, -3, 7, -1, 2, 1, 3, 1, 1, -1, -1, -1, 1, 8, 15, -1, -1, -1, 1, 1, 3, -1, 14, -1, 1, -46, -7, -1, 7, -1, 5, 0, 1, -1, 3, 1, -3, 1, -131
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; A345000(n) = gcd(A003415(n),A003415(A276086(n))); memoA354347 = Map(); A354347(n) = if(1==n,1,my(v); if(mapisdefined(memoA354347,n,&v), v, v = -sumdiv(n,d,if(d
A345000(n/d)*A354347(d),0)); mapput(memoA354347,n,v); (v)));