cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354349 Dirichlet inverse of A181819, prime shadow of n.

Original entry on oeis.org

1, -2, -2, 1, -2, 4, -2, -1, 1, 4, -2, -2, -2, 4, 4, 2, -2, -2, -2, -2, 4, 4, -2, 2, 1, 4, -1, -2, -2, -8, -2, -3, 4, 4, 4, 1, -2, 4, 4, 2, -2, -8, -2, -2, -2, 4, -2, -4, 1, -2, 4, -2, -2, 2, 4, 2, 4, 4, -2, 4, -2, 4, -2, 7, 4, -8, -2, -2, 4, -8, -2, -1, -2, 4, -2, -2, 4, -8, -2, -4, 2, 4, -2, 4, 4, 4, 4, 2, -2, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2022

Keywords

Comments

Multiplicative because A181819 is.

Crossrefs

Cf. A181819.
Cf. also A354186, A354351, A354359.

Programs

  • PARI
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    memoA354349 = Map();
    A354349(n) = if(1==n,1,my(v); if(mapisdefined(memoA354349,n,&v), v, v = -sumdiv(n,d,if(dA181819(n/d)*A354349(d),0)); mapput(memoA354349,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d < n} A181819(n/d) * a(d).