A354358 Möbius transform of A124859.
1, 1, 1, 4, 1, 1, 1, 24, 4, 1, 1, 4, 1, 1, 1, 180, 1, 4, 1, 4, 1, 1, 1, 24, 4, 1, 24, 4, 1, 1, 1, 2100, 1, 1, 1, 16, 1, 1, 1, 24, 1, 1, 1, 4, 4, 1, 1, 180, 4, 4, 1, 4, 1, 24, 1, 24, 1, 1, 1, 4, 1, 1, 4, 27720, 1, 1, 1, 4, 1, 1, 1, 96, 1, 1, 4, 4, 1, 1, 1, 180, 180, 1, 1, 4, 1, 1, 1, 24, 1, 4, 1, 4, 1, 1, 1, 2100
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
primorial[n_] := Product[Prime[i], {i, 1, n}]; primorial[0] = 1; f[p_, e_] := primorial[e] - primorial[e-1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 07 2023 *)
-
PARI
A124859(n) = { my(f=factor(n)); for(k=1, #f~, f[k, 1] = prod(j=1, f[k, 2], prime(j)); f[k, 2] = 1); factorback(f); }; \\ From A124859 A354358(n) = sumdiv(n,d,moebius(n/d)*A124859(d));
Formula
Multiplicative with a(p^e) = primorial(e) - primorial(e-1). - Sebastian Karlsson, Jul 30 2022
Comments