cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354437 a(n) = n! * Sum_{k=0..n} (-k)^(n-k)/k!.

Original entry on oeis.org

1, 1, -1, 1, 13, -199, 2251, -19991, 7001, 7530193, -330734249, 11005284401, -300961551131, 4886902605001, 184195977487523, -28517140157423399, 2322376314679777201, -153646291657993064671, 8388000381774954552751, -287686436757241322569247
Offset: 0

Views

Author

Seiichi Manyama, May 28 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n!*Sum[ (-k)^(n - k)/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 28 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n, (-k)^(n-k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1+k*x)))))
    
  • Python
    from math import factorial
    def A354437(n): return sum(factorial(n)*(-k)**(n-k)//factorial(k) for k in range(n+1)) # Chai Wah Wu, May 28 2022

Formula

E.g.f.: Sum_{k>=0} x^k / (k! * (1 + k*x)).