A354448 11-gonal numbers which are products of two distinct primes.
58, 95, 141, 415, 1241, 2101, 2951, 3683, 6031, 7421, 16531, 24383, 35333, 39433, 42001, 50191, 53083, 66551, 83981, 95411, 123421, 146791, 173951, 182911, 190241, 229051, 296321, 307981, 336883, 409361, 442583, 451091, 477101, 500833, 546883, 588431, 669131
Offset: 1
Keywords
Examples
58 = 4*(9*4 - 7)/2 = 2*29; 141 = 6*(9*6 - 7)/2 = 3*47; 415 = 10*(9*10 - 7)/2 = 5*83; 3683 = 29*(9*29 - 7)/2 = 29*127.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^6: # for terms <= N x1:= floor(fsolve(x*(9*x-7)/2=N)[2]): A:= map(p -> p*(9*p-7)/2, select(p -> isprime(p) and isprime((9*p-7)/2), [seq(i,i=3..x1,2)])): x2:= floor(fsolve(x*(18*x-7)=N)[2]): B:= map(p -> p*(18*p-7), select(p -> isprime(p) and isprime(18*p-7), [2, seq(i,i=3..x2,2)])): sort([op(A),op(B)]); # Robert Israel, Mar 03 2025
-
Mathematica
Select[Table[n*(9*n - 7)/2, {n, 1, 400}], FactorInteger[#][[;; , 2]] == {1, 1} &] (* Amiram Eldar, May 30 2022 *)
-
Python
from sympy import factorint from itertools import count, islice def agen(): for h in (k*(9*k - 7)//2 for k in count(1)): f = factorint(h, multiple=True) if len(f) == len(set(f)) == 2: yield h print(list(islice(agen(), 37))) # Michael S. Branicky, May 30 2022
Comments