cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354448 11-gonal numbers which are products of two distinct primes.

Original entry on oeis.org

58, 95, 141, 415, 1241, 2101, 2951, 3683, 6031, 7421, 16531, 24383, 35333, 39433, 42001, 50191, 53083, 66551, 83981, 95411, 123421, 146791, 173951, 182911, 190241, 229051, 296321, 307981, 336883, 409361, 442583, 451091, 477101, 500833, 546883, 588431, 669131
Offset: 1

Views

Author

Massimo Kofler, May 30 2022

Keywords

Comments

A squarefree subsequence of 11-gonal numbers, i.e., numbers of the form k*(9*k-7)/2.
Numbers of the form p*(9*p-7)/2 where p and (9*p-7)/2 are prime, and numbers of the form p*(18*p-7) where p and 18*p-7 are prime. - Robert Israel, Mar 03 2025

Examples

			    58 =  4*(9*4  - 7)/2 =  2*29;
   141 =  6*(9*6  - 7)/2 =  3*47;
   415 = 10*(9*10 - 7)/2 =  5*83;
  3683 = 29*(9*29 - 7)/2 = 29*127.
		

Crossrefs

Intersection of A051682 and A006881.

Programs

  • Maple
    N:= 10^6: # for terms <= N
    x1:= floor(fsolve(x*(9*x-7)/2=N)[2]):
    A:= map(p -> p*(9*p-7)/2, select(p -> isprime(p) and isprime((9*p-7)/2), [seq(i,i=3..x1,2)])):
    x2:= floor(fsolve(x*(18*x-7)=N)[2]):
    B:= map(p -> p*(18*p-7), select(p -> isprime(p) and isprime(18*p-7),
      [2, seq(i,i=3..x2,2)])):
    sort([op(A),op(B)]); # Robert Israel, Mar 03 2025
  • Mathematica
    Select[Table[n*(9*n - 7)/2, {n, 1, 400}], FactorInteger[#][[;; , 2]] == {1, 1} &] (* Amiram Eldar, May 30 2022 *)
  • Python
    from sympy import factorint
    from itertools import count, islice
    def agen():
        for h in (k*(9*k - 7)//2 for k in count(1)):
            f = factorint(h, multiple=True)
            if len(f) == len(set(f)) == 2: yield h
    print(list(islice(agen(), 37))) # Michael S. Branicky, May 30 2022