A354450 Decimal expansion of Sum_{k>=1} (1 - log(k)/k)^(2*k).
1, 4, 0, 7, 1, 0, 4, 4, 2, 7, 4, 3, 5, 1, 7, 6, 5, 8, 7, 3, 5, 3, 6, 8, 7, 6, 9, 6, 5, 0, 7, 8, 2, 8, 5, 5, 0, 5, 2, 1, 2, 7, 4, 0, 7, 1, 4, 4, 7, 7, 7, 5, 5, 1, 4, 7, 9, 4, 0, 5, 0, 9, 2, 8, 2, 5, 4, 5, 5, 0, 1, 3, 6, 4, 2, 9, 0, 6, 0, 8, 1, 5, 2, 6, 2, 8, 8, 6, 5, 6, 5, 1, 6, 2, 8, 6, 0, 0, 2, 8, 8, 9, 7, 9, 4
Offset: 1
Examples
1.40710442743517658735368769650782855052127407144777551479405092825455...
Links
- Mathematica Stack Exchange, Converges or diverges?, 2021.
Programs
-
Maple
Digits := 120: ser := sort(convert(series((1-log(n)/n)^(2*n), n = infinity, 300), polynom), n): s := evalf(sum(op(1, ser), n = 1..infinity) + sum(op(2, ser), n = 1..infinity), 120): for k from 3 to nops(ser) do serx := expand(op(k, ser)): for j to nops(serx) do s := s + evalf(sum(op(j, serx), n = 1..infinity), 120) end do: print(k, s) end do:
-
Mathematica
NSum[(1 - Log[n]/n)^(2*n), {n, 1, Infinity}, WorkingPrecision -> 100, NSumTerms -> 1000] (* only 74 digits are correct *)
-
PARI
default(realprecision, 120); sumpos(k=1, (1 - log(k)/k)^(2*k))
Comments