cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354592 Decimal expansion of Sum_{k>=1} (1/k - (1 - log(k)/k)^k).

Original entry on oeis.org

1, 0, 3, 0, 5, 4, 2, 3, 5, 3, 7, 8, 4, 9, 4, 1, 2, 0, 8, 9, 9, 6, 2, 8, 0, 9, 2, 9, 8, 2, 8, 8, 7, 4, 6, 0, 7, 8, 2, 8, 1, 1, 0, 5, 5, 4, 1, 4, 5, 3, 5, 6, 7, 1, 3, 6, 3, 1, 9, 2, 1, 6, 4, 4, 6, 1, 6, 6, 7, 5, 1, 0, 9, 5, 0, 4, 0, 4, 8, 3, 2, 9, 0, 2, 5, 7, 5, 5, 5, 4, 7, 4, 0, 0, 3, 0, 3, 0, 7, 4, 9, 0, 2, 4, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 01 2022

Keywords

Examples

			1.030542353784941208996280929828874607828110554145356713631921644616675...
		

Crossrefs

Programs

  • Maple
    Digits := 120: ser := sort(convert(series((1/n - (1 - log(n)/n)^n), n = infinity, 300), polynom), n): s := evalf(sum(op(1, ser), n = 1..infinity), 120): for k from 2 to nops(ser) do serx := expand(op(k, ser)): for j to nops(serx) do s := s + evalf(sum(op(j, serx), n = 1..infinity), 120) end do: print(k, s) end do:
  • Mathematica
    NSum[1/k - (1 - Log[k]/k)^k, {k, 1, Infinity}, WorkingPrecision -> 30, NSumTerms -> 100] (* only 20 digits are correct *)

A354593 Decimal expansion of Sum_{k>=1} (1 - log(k)/k)^(3*k).

Original entry on oeis.org

1, 1, 0, 9, 8, 1, 2, 3, 5, 1, 6, 7, 2, 7, 4, 0, 9, 0, 2, 5, 9, 7, 7, 2, 3, 0, 0, 5, 6, 8, 6, 1, 6, 4, 7, 7, 9, 3, 8, 0, 1, 6, 3, 2, 5, 6, 1, 0, 3, 3, 4, 2, 3, 8, 6, 7, 9, 2, 0, 8, 1, 3, 4, 8, 4, 1, 9, 8, 3, 1, 0, 9, 3, 6, 0, 1, 2, 2, 5, 5, 7, 4, 1, 4, 4, 0, 2, 2, 5, 4, 5, 2, 0, 9, 9, 8, 8, 3, 9, 4, 0, 4, 5, 3, 8
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 01 2022

Keywords

Examples

			1.109812351672740902597723005686164779380163256103342386792081348419831...
		

Crossrefs

Programs

  • Maple
    Digits := 120: ser := sort(convert(series((1-log(n)/n)^(3*n), n = infinity, 300), polynom), n): s := evalf(sum(op(1, ser), n = 1..infinity) + sum(op(2, ser), n = 1..infinity), 120): for k from 3 to nops(ser) do serx := expand(op(k, ser)): for j to nops(serx) do s := s + evalf(sum(op(j, serx), n = 1..infinity), 120) end do: print(k, s) end do:
  • Mathematica
    NSum[(1 - Log[k]/k)^(3*k), {k, 1, Infinity}, WorkingPrecision -> 40, NSumTerms -> 1000]
  • PARI
    sumpos(k=1, (1 - log(k)/k)^(3*k)) \\ Michel Marcus, Jun 01 2022
Showing 1-2 of 2 results.