cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354450 Decimal expansion of Sum_{k>=1} (1 - log(k)/k)^(2*k).

Original entry on oeis.org

1, 4, 0, 7, 1, 0, 4, 4, 2, 7, 4, 3, 5, 1, 7, 6, 5, 8, 7, 3, 5, 3, 6, 8, 7, 6, 9, 6, 5, 0, 7, 8, 2, 8, 5, 5, 0, 5, 2, 1, 2, 7, 4, 0, 7, 1, 4, 4, 7, 7, 7, 5, 5, 1, 4, 7, 9, 4, 0, 5, 0, 9, 2, 8, 2, 5, 4, 5, 5, 0, 1, 3, 6, 4, 2, 9, 0, 6, 0, 8, 1, 5, 2, 6, 2, 8, 8, 6, 5, 6, 5, 1, 6, 2, 8, 6, 0, 0, 2, 8, 8, 9, 7, 9, 4
Offset: 1

Views

Author

Vaclav Kotesovec, May 30 2022

Keywords

Comments

Convergence of this sum is slow, but (1 - log(k)/k)^(2*k) can be expanded as 1/k^2 - log(k)^2/k^3 + (-4*log(k)^3 + 3*log(k)^4)/(6*k^4) + (-3*log(k)^4 + 4*log(k)^5 - log(k)^6)/(6*k^5) + ... and each of these summands can be evaluated exactly because Sum_{k>=1} log(k)^r/k^s is equal to the r-th derivative of zeta(s) * (-1)^r. For example, Sum_{k>=1} log(k)^2/k^3 = zeta''(3).

Examples

			1.40710442743517658735368769650782855052127407144777551479405092825455...
		

Crossrefs

Programs

  • Maple
    Digits := 120: ser := sort(convert(series((1-log(n)/n)^(2*n), n = infinity, 300), polynom), n): s := evalf(sum(op(1, ser), n = 1..infinity) + sum(op(2, ser), n = 1..infinity), 120): for k from 3 to nops(ser) do serx := expand(op(k, ser)): for j to nops(serx) do s := s + evalf(sum(op(j, serx), n = 1..infinity), 120) end do: print(k, s) end do:
  • Mathematica
    NSum[(1 - Log[n]/n)^(2*n), {n, 1, Infinity}, WorkingPrecision -> 100, NSumTerms -> 1000] (* only 74 digits are correct *)
  • PARI
    default(realprecision, 120); sumpos(k=1, (1 - log(k)/k)^(2*k))

A354593 Decimal expansion of Sum_{k>=1} (1 - log(k)/k)^(3*k).

Original entry on oeis.org

1, 1, 0, 9, 8, 1, 2, 3, 5, 1, 6, 7, 2, 7, 4, 0, 9, 0, 2, 5, 9, 7, 7, 2, 3, 0, 0, 5, 6, 8, 6, 1, 6, 4, 7, 7, 9, 3, 8, 0, 1, 6, 3, 2, 5, 6, 1, 0, 3, 3, 4, 2, 3, 8, 6, 7, 9, 2, 0, 8, 1, 3, 4, 8, 4, 1, 9, 8, 3, 1, 0, 9, 3, 6, 0, 1, 2, 2, 5, 5, 7, 4, 1, 4, 4, 0, 2, 2, 5, 4, 5, 2, 0, 9, 9, 8, 8, 3, 9, 4, 0, 4, 5, 3, 8
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 01 2022

Keywords

Examples

			1.109812351672740902597723005686164779380163256103342386792081348419831...
		

Crossrefs

Programs

  • Maple
    Digits := 120: ser := sort(convert(series((1-log(n)/n)^(3*n), n = infinity, 300), polynom), n): s := evalf(sum(op(1, ser), n = 1..infinity) + sum(op(2, ser), n = 1..infinity), 120): for k from 3 to nops(ser) do serx := expand(op(k, ser)): for j to nops(serx) do s := s + evalf(sum(op(j, serx), n = 1..infinity), 120) end do: print(k, s) end do:
  • Mathematica
    NSum[(1 - Log[k]/k)^(3*k), {k, 1, Infinity}, WorkingPrecision -> 40, NSumTerms -> 1000]
  • PARI
    sumpos(k=1, (1 - log(k)/k)^(3*k)) \\ Michel Marcus, Jun 01 2022
Showing 1-2 of 2 results.