A354495
Number of unital quantales on n elements, up to isomorphism.
Original entry on oeis.org
1, 1, 3, 20, 149, 1488, 18554, 295292, 6105814
Offset: 1
- P. Eklund, J. G. García, U. Höhle, and J. Kortelainen, (2018). Semigroups in complete lattices. In Developments in Mathematics (Vol. 54). Springer Cham.
- K. I. Rosenthal, Quantales and their applications. Longman Scientific and Technical, 1990.
- Arman Shamsgovara, A catalogue of every quantale of order up to 9 (abstract, to appear), LINZ2022, 39th Linz Seminar on Fuzzy Set Theory, Linz, Austria.
- Arman Shamsgovara and P. Eklund, A Catalogue of Finite Quantales, GLIOC Notes, December 2019.
A354496
Number of left-sided quantales on n elements, up to isomorphism. Also number of right-sided quantales on n elements, up to isomorphism.
Original entry on oeis.org
1, 2, 9, 60, 497, 4968, 58507, 807338, 13341730
Offset: 1
- P. Eklund, J. G. García, U. Höhle, and J. Kortelainen, (2018). Semigroups in complete lattices. In Developments in Mathematics (Vol. 54). Springer Cham.
- K. I. Rosenthal, Quantales and their applications. Longman Scientific and Technical, 1990.
- Arman Shamsgovara, A catalogue of every quantale of order up to 9 (abstract), LINZ2022, 39th Linz Seminar on Fuzzy Set Theory, Linz, Austria.
A354494
Number of semi-unital quantales on n elements, up to isomorphism.
Original entry on oeis.org
1, 1, 6, 64, 939, 17578, 403060, 11327795, 440735463
Offset: 1
- P. Eklund, J. G. García, U. Höhle, and J. Kortelainen, (2018). Semigroups in complete lattices. In Developments in Mathematics (Vol. 54). Springer Cham.
- K. I. Rosenthal, Quantales and their applications. Longman Scientific and Technical, 1990.
- Arman Shamsgovara, A catalogue of every quantale of order up to 9 (abstract, to appear), LINZ2022, 39th Linz Seminar on Fuzzy Set Theory, Linz, Austria.
A354497
Number of strictly left-sided quantales on n elements, up to isomorphism. Also number of strictly right-sided quantales on n elements, up to isomorphism.
Original entry on oeis.org
1, 1, 4, 23, 164, 1482, 15838, 197262, 2830649
Offset: 1
- P. Eklund, J. G. García, U. Höhle, and J. Kortelainen, (2018). Semigroups in complete lattices. In Developments in Mathematics (Vol. 54). Springer Cham.
- K. I. Rosenthal, Quantales and their applications. Longman Scientific and Technical, 1990.
- Arman Shamsgovara, A catalogue of every quantale of order up to 9 (abstract), LINZ2022, 39th Linz Seminar on Fuzzy Set Theory, Linz, Austria.
A357295
Number of balanced quantales on n elements, up to isomorphism.
Original entry on oeis.org
1, 1, 9, 106, 1597, 29720, 663897, 17747907, 620659554
Offset: 1
- P. Eklund, J. G. García, U. Höhle, and J. Kortelainen, (2018). Semigroups in complete lattices. In Developments in Mathematics (Vol. 54). Springer Cham.
- K. I. Rosenthal, Quantales and their applications. Longman Scientific and Technical, 1990.
- Arman Shamsgovara, A catalogue of every quantale of order up to 9 (abstract), LINZ2022, 39th Linz Seminar on Fuzzy Set Theory, Linz, Austria.
- Arman Shamsgovara and P. Eklund, A Catalogue of Finite Quantales, GLIOC Notes, December 2019.
A354498
Number of two-sided quantales on n elements, up to isomorphism.
Original entry on oeis.org
1, 2, 8, 47, 354, 3277, 36506, 490983, 8301353
Offset: 1
- P. Eklund, J. G. García, U. Höhle, and J. Kortelainen, (2018). Semigroups in complete lattices. In Developments in Mathematics (Vol. 54). Springer Cham.
- K. I. Rosenthal, Quantales and their applications. Longman Scientific and Technical, 1990.
- Arman Shamsgovara, A catalogue of every quantale of order up to 9 (abstract, to appear), LINZ2022, 39th Linz Seminar on Fuzzy Set Theory, Linz, Austria.
A357294
Number of integral quantales on n elements, up to isomorphism.
Original entry on oeis.org
1, 1, 2, 9, 49, 364, 3335, 37026, 496241
Offset: 1
- P. Eklund, J. G. García, U. Höhle, and J. Kortelainen, (2018). Semigroups in complete lattices. In Developments in Mathematics (Vol. 54). Springer Cham.
- K. I. Rosenthal, Quantales and their applications. Longman Scientific and Technical, 1990.
- Arman Shamsgovara, A catalogue of every quantale of order up to 9 (abstract), LINZ2022, 39th Linz Seminar on Fuzzy Set Theory, Linz, Austria.
- Arman Shamsgovara and P. Eklund, A Catalogue of Finite Quantales, GLIOC Notes, December 2019.
Showing 1-7 of 7 results.
Comments