cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347915 Expansion of e.g.f. Product_{k>=1} (1 + x^k)^exp(x).

Original entry on oeis.org

1, 1, 4, 24, 150, 1235, 11725, 126987, 1512084, 20313897, 296921623, 4700713787, 80221988726, 1468879687145, 28661345212981, 594457831566757, 13027193829914920, 301079987772726257, 7318797530268562203, 186496088631167771143, 4971371842655844396298, 138384071439982000722737
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + x^k)^Exp[x], {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 17 2022 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, (1+x^k)^exp(x))))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(exp(x)*sum(k=1, N, sigma(k>>valuation(k, 2))*x^k/k))))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(exp(x)*sum(k=1, N, x^k/(k*(1-x^(2*k)))))))
    
  • PARI
    a354507(n) = n!*sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*d)/(k*(n-k)!));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a354507(j)*binomial(i-1, j-1)*v[i-j+1])); v; \\ Seiichi Manyama, Aug 16 2022

Formula

E.g.f.: exp( exp(x) * Sum_{k>=1} A000593(k)*x^k/k ).
E.g.f.: exp( exp(x) * Sum_{k>=1} x^k/(k*(1 - x^(2*k))) ).
a(0) = 1; a(n) = Sum_{k=1..n} A354507(k) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Aug 16 2022

A354504 Expansion of e.g.f. ( Product_{k>0} (1 + x^k)^k )^exp(x).

Original entry on oeis.org

1, 1, 6, 48, 402, 4375, 54595, 777189, 12284188, 215999025, 4132338673, 85640640877, 1910121348674, 45571124446445, 1157169377895739, 31150000798832647, 885481496002286200, 26498034473000080321, 832407848080194500301, 27378188500890922864153
Offset: 0

Views

Author

Seiichi Manyama, Aug 15 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1+x^k)^k)^exp(x)))
    
  • PARI
    a354508(n) = n!*sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*d^2)/(k*(n-k)!));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a354508(j)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A354508(k) * binomial(n-1,k-1) * a(n-k).
Showing 1-2 of 2 results.