A354510 Primes of the form p+q^2+r where p,q,r are three consecutive members of A007528.
13007, 28211, 36857, 39227, 86441, 272507, 345731, 459671, 467867, 553529, 599087, 746507, 777911, 788561, 910127, 1354901, 1425653, 1512923, 1587587, 1710869, 2039171, 2509061, 2624411, 3196913, 3617597, 3896657, 4161611, 4260077, 4359749, 4460549, 4536893, 4639757, 5171093, 5280791, 5673911, 5963351
Offset: 1
Keywords
Examples
a(3) = 36857 is in the sequence because 36857 = 179 + 191^2 + 197 and 179 = A007528(21), 191 = A007528(22) and 197 = A007528(23).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A007528.
Programs
-
Maple
q:= 5: r:= 11: count:= 0: R:= NULL: while count < 40 do p:= q; q:= r; do r:= r+6 until isprime(r); if isprime(p+q^2+r) then count:= count+1; R:= R, p+q^2+r fi od: R;
-
Mathematica
Select[#[[1]] + #[[2]]^2 + #[[3]] & /@ Partition[Select[Prime[Range[400]], Mod[#1, 6] == 5 &], 3, 1], PrimeQ] (* Amiram Eldar, Aug 16 2022 *)
Comments