cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354529 a(1) = 3, a(2) = 12 and a(n) = (3n^2+8n-2)/2 if n is even or = (3n^2+8n-5)/2, if n is odd, for n >= 3.

Original entry on oeis.org

3, 12, 23, 39, 55, 77, 99, 127, 155, 189, 223, 263, 303, 349, 395, 447, 499, 557, 615, 679, 743, 813, 883, 959, 1035, 1117, 1199, 1287, 1375, 1469, 1563, 1663, 1763, 1869, 1975, 2087, 2199, 2317, 2435, 2559, 2683, 2813, 2943, 3079, 3215, 3357, 3499, 3647, 3795, 3949, 4103, 4263, 4423
Offset: 1

Views

Author

Sela Fried, Aug 16 2022

Keywords

Comments

The disorder number M(G) of a graph G is defined to be the maximal length of a walk along the edges of the graph, according to any ordering of its vertices.
Conjecture: a(n) = M(P_3 X P_n) where P_3 X P_n is the grid graph of size 3 X n.

Crossrefs

Programs

  • Python
    def A354529(n): return 9*n-6 if n<3 else n*(3*n+8)-2-3*(n&1)>>1 # Chai Wah Wu, Sep 11 2022

Formula

From Stefano Spezia, Aug 16 2022: (Start)
O.g.f.: x*(3 + 6*x - x^2 - x^3 - 2*x^4 + x^5)/((1 - x)^3*(1 + x)).
E.g.f.: ((3*x^2 + 11*x - 2)*cosh(x) + (3*x^2 + 11*x - 5)*sinh(x) - x^2 + 2)/2. (End)