A354549 Numbers k such that floor(k^2*phi) is a square, where phi = A001622 is the golden ratio.
0, 1, 4, 125, 84277, 1435150, 9061191, 249858189, 2799936925, 146234239784, 1139643680683264, 7471434609455791, 21274660147684109, 2911209509190673141, 15845190736671957299, 995980378496501932493, 213688560255016550712685, 28372206851301867342910959
Offset: 1
Keywords
Examples
4 is a term since floor(4^2*phi) = 5^2. 125 is a term since floor(125^2*phi) = 159^2.
Links
- Jianing Song, Table of n, a(n) for n = 1..140
- Mathematics Stack Exchange, If |x - p/q| < 1/(2*q^2) then p/q is necessarily one of the convergents
- Wikipedia, Continued fraction
Programs
-
PARI
A000201(n) = (n+sqrtint(5*n^2))\2; isok(n) = issquare(A000201(n^2))
-
PARI
print1("0, 1, "); my(cofr=A331692_vector_bits(1000), conv=matrix(2,#cofr)); conv[,1]=[1,1]~; conv[,2]=[4,3]~; for(n=3, #cofr, conv[,n]=cofr[n]*conv[,n-1]+conv[,n-2]; if(n%2 == 1 && (conv[1,n]^2+1)^2 - (conv[1,n]^2+1)*(conv[2,n]^2) - (conv[2,n]^2)^2 > 0, print1(conv[2,n], ", "))) \\ Here conv[1,n] = A225204(n-1), conv[2,n] = A225205(n-1), n odd implies conv[1,n]/conv[2,n] < sqrt((1+sqrt(5))/2); let A = conv[1,n]^2+1, B = conv[2,n]^2, then A^2 - A*B - B^2 > 0 implies A/B > (1+sqrt(5))/2 \\ Modified by Jianing Song, Aug 28 2022 according to Kevin Ryde's program for A331692
Comments