A354563 Numbers k such that P(k)^2 | k and P(k+1)^3 | (k+1), where P(k) = A006530(k) is the largest prime dividing k.
242, 2400, 6859, 10647, 47915, 57121, 344604, 499999, 830465, 1012499, 1431125, 2098853, 2825760, 2829123, 3930399, 5560691, 11859210, 12323584, 13137830, 18253460, 18279039, 21093749, 30664296, 32279841, 33999932, 37218852, 38640401, 38740085, 41485688, 45222737
Offset: 1
Keywords
Examples
242 = 2 * 11^2 is a term since P(242) = 11 and 11^2 | 242, 243 = 3^5, P(243) = 3, and 3^3 | 243.
Links
- Daniel Suteu, Table of n, a(n) for n = 1..9503 (terms <= 10^15)
- Jean-Marie De Koninck and Matthieu Moineau, Consecutive Integers Divisible by a Power of their Largest Prime Factor, J. Integer Seq., Vol. 21 (2018), Article 18.9.3.
Crossrefs
Programs
-
Mathematica
p[n_] := FactorInteger[n][[-1, 2]]; Select[Range[10^6], p[#] > 1 && p[# + 1] > 2 &]
-
Python
from sympy import factorint def c(n, e): f = factorint(n); return f[max(f)] >= e def ok(n): return n > 1 and c(n, 2) and c(n+1, 3) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, May 30 2022