A354583 Heinz numbers of non-rucksack partitions: not every prime-power divisor has a different sum of prime indices.
12, 24, 36, 40, 48, 60, 63, 72, 80, 84, 96, 108, 112, 120, 126, 132, 144, 156, 160, 168, 180, 189, 192, 200, 204, 216, 224, 228, 240, 252, 264, 276, 280, 288, 300, 312, 315, 320, 324, 325, 336, 348, 351, 352, 360, 372, 378, 384, 396, 400, 408, 420, 432, 440
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 12: {1,1,2} 24: {1,1,1,2} 36: {1,1,2,2} 40: {1,1,1,3} 48: {1,1,1,1,2} 60: {1,1,2,3} 63: {2,2,4} 72: {1,1,1,2,2} 80: {1,1,1,1,3} 84: {1,1,2,4} 96: {1,1,1,1,1,2} 108: {1,1,2,2,2} 112: {1,1,1,1,4} 120: {1,1,1,2,3} 126: {1,2,2,4} 132: {1,1,2,5} 144: {1,1,1,1,2,2} 156: {1,1,2,6} 160: {1,1,1,1,1,3} 168: {1,1,1,2,4} For example, {2,2,2,3,3} does not have distinct run-sums because 2+2+2 = 3+3, so 675 is in the sequence.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],!UnsameQ@@Total/@primeMS/@Select[Divisors[#],PrimePowerQ]&]
Comments