cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A335987 Triangular array read by rows: T(n,k) is the number of labeled quasi-orders on [n] that are composed of exactly k irreducible components n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 11, 12, 6, 0, 147, 112, 72, 24, 0, 3412, 1910, 1020, 480, 120, 0, 121553, 52184, 21870, 9600, 3600, 720, 0, 6353629, 2101540, 693672, 254520, 96600, 30240, 5040, 0, 476850636, 120988214, 31163496, 9289728, 3116400, 1048320, 282240, 40320
Offset: 0

Views

Author

Geoffrey Critzer, Jul 10 2022

Keywords

Examples

			  1;
  0,    1;
  0,    2,    2;
  0,   11,   12,    6;
  0,  147,  112,   72,  24;
  0, 3412, 1910, 1020, 480, 120;
  ...
		

Crossrefs

Cf. A000798 (row sums), A046912 (column k=1), A000142 (main diagonal), A354615.

Programs

  • Mathematica
    nn = 9; A[x_] := Total[Cases[Import["https://oeis.org/A000798/b000798.txt",
          "Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]];
    Table[Take[(Range[0, nn]! CoefficientList[Series[1/(1 - y (1 - 1/A[x])), {x, 0, nn}], {x, y}])[[i]],  i], {i, 1, nn}] // Grid

Formula

E.g.f.: 1/(1 - y*(1 - 1/A(x))) where A(x) is the e.g.f. for A000798.

A046906 Number of connected irreducible posets with n labeled points.

Original entry on oeis.org

1, 1, 0, 0, 24, 1080, 52440, 3281880, 277953144, 32418855000, 5239070305080, 1173944480658840, 363936227764858584, 155521768202208047640, 91218870039317505477720, 73113879800794757415243480, 79743817918540500914682249144, 117883366412734188786535902826200, 235329353612778837110901775412557560
Offset: 0

Views

Author

John A. Wright

Keywords

References

  • J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.

Crossrefs

A003431 gives isomorphism classes of these posets.

Programs

  • Mathematica
    nn = 18; A[x_] := Total[Cases[Import["https://oeis.org/A001035/b001035.txt",
          "Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]];
    Range[0, nn]! CoefficientList[ Series[(1 + Log[A[x]]) - A[ x] (1 - 1/A[x])^2 , {x, 0, nn}], x] (* Geoffrey Critzer, Jul 09 2022 *)

Formula

From Geoffrey Critzer, Jul 09 2022: (Start)
E.g.f.: 1 + log(A(x)) - A(x)(1-1/A(x))^2 where A(x) is the e.g.f. for A001035.
a(n) = A001927(n) - Sum_{k>=2} A354615(n,k). (End)

Extensions

a(8)-a(18) from Geoffrey Critzer, Jul 09 2022
a(0) changed to 1 by Geoffrey Critzer, Jul 10 2022
Showing 1-2 of 2 results.