cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354618 a(n) = (sum of the digits of 5^n) - (sum of the digits of 2^n).

Original entry on oeis.org

0, 3, 3, 0, 6, 6, 9, 12, 12, 18, 33, 24, 9, 3, 12, 18, 33, 42, 45, 30, 30, 36, 42, 33, 45, 48, 39, 54, 42, 42, 54, 57, 48, 27, 42, 33, 45, 48, 57, 63, 69, 87, 99, 93, 93, 54, 42, 60, 72, 93, 75, 72, 51, 42, 45, 75, 111, 135, 141, 114, 117, 120, 102, 81, 78, 78
Offset: 0

Views

Author

Bernard Schott, Jul 08 2022

Keywords

Comments

Wu Wei Chao asked in American Mathematical Monthly for a proof that a(n) >= 0 with a(n) = 0 only if n = 0 or n = 3 (see Richard K. Guy reference).

Examples

			a(6) = sod(5^6) - sod(2^6) = sod(15625) - sod(64) = (1+5+6+2+5) - (6+4) = 19 - 10 = 9.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F24, Some decimal digital problems, p. 398.

Crossrefs

Programs

  • Mathematica
    a[n_] := Subtract @@ (Plus @@ IntegerDigits[#] & /@ {5^n, 2^n}); Array[a, 100, 0] (* Amiram Eldar, Jul 09 2022 *)
  • PARI
    a(n) = sumdigits(5^n) - sumdigits(2^n); \\ Michel Marcus, Jul 09 2022
    
  • Python
    def a(n): return sum(map(int, str(5**n))) - sum(map(int, str(2**n)))
    print([a(n) for n in range(66)]) # Michael S. Branicky, Jul 09 2022

Formula

a(n) = A066001(n) - A001370(n).