cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354645 G.f. A(x) satisfies: -x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) * A(x)^n.

Original entry on oeis.org

1, 1, 3, 9, 23, 62, 179, 571, 1888, 6309, 21114, 71387, 245162, 854703, 3010602, 10673814, 38036229, 136250135, 490696565, 1776089734, 6456234450, 23554296293, 86210280655, 316481218498, 1165089759958, 4300364442451, 15910717070706, 58996259565000
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 23*x^4 + 62*x^5 + 179*x^6 + 571*x^7 + 1888*x^8 + 6309*x^9 + 21114*x^10 + 71387*x^11 + 245162*x^12 + ...
such that
x = (A(x) - 1) - x*(A(x)^2 - 1/A(x)) + x^3*(A(x)^3 - 1/A(x)^2) - x^6*(A(x)^4 - 1/A(x)^3) + x^10*(A(x)^5 - 1/A(x)^4) - x^15*(A(x)^6 - 1/A(x)^5) + x^21*(A(x)^7 - 1/A(x)^6) + ...
Also, we have the infinite product
-x = (1 - A(x))*(1 - x/A(x))*(1-x) * (1 - x*A(x))*(1 - x^2/A(x))*(1-x^2) * (1 - x^2*A(x))*(1 - x^3/A(x))*(1-x^3) * (1 - x^3*A(x))*(1 - x^4/A(x))*(1-x^4) * ...
		

Crossrefs

Cf. A369086.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff(x + sum(m=-#A,#A, (-1)^m * x^(m*(m-1)/2) * Ser(A)^m ),#A-1));H=A;A[n+1]}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) -x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) * A(x)^n.
(2) -x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.
(3) x = Sum_{n>=0} (-1)^n * x^(n*(n+1)/2) * (A(x)^(n+1) - 1/A(x)^n).
(4) -x = Product_{n>=1} (1 - x^(n-1)*A(x)) * (1 - x^n/A(x)) * (1 - x^n), by the Jacobi Triple Product identity. - Paul D. Hanna, Jan 22 2024