cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354651 G.f. A(x) satisfies: 1/(1 - x) = Sum_{n>=1} (-1)^(n-1) * A(x)^(n^2).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 25, 64, 168, 434, 1136, 3046, 8246, 22400, 61290, 169036, 468628, 1304390, 3646104, 10232796, 28814306, 81376616, 230462906, 654363034, 1862260359, 5311064061, 15176758091, 43448083792, 124593820615, 357853635931, 1029326055479, 2964817204082
Offset: 1

Views

Author

Paul D. Hanna, Jun 18 2022

Keywords

Comments

Conjectures:
(C.1) a(4*n) = 0 (mod 2) for n >= 0.
(C.2) a(4*n+1) = a(4*n+2) = a(4*n+3) (mod 2) for n >= 0.
(C.3) a(4*n+1) = a(4*n+3) (mod 4) for n >= 0.

Examples

			G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 11*x^6 + 25*x^7 + 64*x^8 + 168*x^9 + 434*x^10 + 1136*x^11 + 3046*x^12 + 8246*x^13 + 22400*x^14 + ...
where
1/(1-x) = A(x) - A(x)^4 + A(x)^9 - A(x)^16 + A(x)^25 - A(x)^36 + A(x)^49 -+ ... + (-1)^(n-1) * A(x)^(n^2) + ...
By the Jacobi triple product
(1 - 3*x)/(1 - x) = (1 - A(x)^2)*(1 - A(x))^2 * (1 - A(x)^4) * (1 - A(x)^3)^2 * (1 - A(x)^6) * (1 - A(x)^5)^2 * (1 - A(x)^8) * (1 - A(x)^7)^2 * ...
		

Crossrefs

Cf. A006456 (the series reversion of -A(-x) is the g.f. for A006456, apart from the initial term).
Cf. A355151.

Programs

  • PARI
    {a(n) = my(A=[0,1],t); for(i=1,n, A = concat(A,0); t = sqrtint(#A)+1;
    A[#A] = 1 + polcoeff( sum(n=1,t, (-1)^n * Ser(A)^(n^2)), #A-1)); H=A; A[n+1]}
    for(n=1,40,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) (1 - 3*x)/(1 - x) = Sum_{n=-oo..+oo} (-1)^n * A(x)^(n^2).
(2) (1 - 3*x)/(1 - x) = Product_{n>=1} (1 - A(x)^(2*n)) * (1 - A(x)^(2*n-1))^2, by the Jacobi triple product identity.
(3) (1 - 3*x)^2/(1 - x)^2 = 1 + 4*Sum_{n>=1} (-1)^n * A(x)^(2*n-1)/(1 + A(x)^(2*n-1)), by a q-series identity for the Jacobi theta_3 function.
(4) (1 - 3*x)^4/(1 - x)^4 = 1 + 8*Sum_{n>=1} (-1)^n * n * A(x)^n/(1 + A(x)^n), by a q-series identity for the Jacobi theta_3 function.