cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354661 G.f. A(x) satisfies: 1 = Sum_{n=-oo..oo} (-x)^(n*(n+1)/2) * A(x)^(n*(n-1)/2), with A(0) = 0.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 8, 0, 0, 44, 0, 6, 280, 0, 96, 1934, 0, 1124, 14088, 18, 11792, 106536, 648, 117626, 828360, 13416, 1142288, 6580780, 216000, 10921088, 53184864, 3019614, 103408416, 435930008, 38629656, 973041448, 3615741192, 465419760, 9118011128, 30298375236
Offset: 1

Views

Author

Paul D. Hanna, Jun 02 2022

Keywords

Examples

			G.f.: A(x) = x + 2*x^4 + 8*x^7 + 44*x^10 + 6*x^12 + 280*x^13 + 96*x^15 + 1934*x^16 + 1124*x^18 + 14088*x^19 + 18*x^20 + 11792*x^21 + ...
such that A = A(x) satisfies:
(1) 1 = ... + x^36*A^28 + x^28*A^21 - x^21*A^15 - x^15*A^10 + x^10*A^6 + x^6*A^3 - x^3*A - x + 1 + A - x*A^3 - x^3*A^6 + x^6*A^10 + x^10*A^15 - x^15*A^21 - x^21*A^28 + x^28*A^36 +--+ ...
(2) 1 = (1-x) + (1-x^3)*A - x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 + x^10*(1-x^11)*A^15 - x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) 1 = (1+A) - (1+A^3)*x - A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 - A^10*(1+A^11)*x^15 - A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...
(4) 1 = (1 + x*A)*(1 + A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 + x^2*A) * (1 + x^3*A^3)*(1 + x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 + x^4*A^3) * (1 + x^5*A^5)*(1 + x^4*A^5)*(1 - x^5*A^4) * ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0]); for(i=0,n, A = concat(A,0);
    A[#A] = -polcoeff(-1 + sum(m=0,sqrtint(2*#A+9), (-x)^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );H=A;A[n+1]}
    for(n=1,50,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) 1 = Sum_{n=-oo..oo} (-x)^(n*(n-1)/2) * A(x)^(n*(n+1)/2).
(2) 1 = Sum_{n>=0} (-x)^(n*(n-1)/2) * (1 - x^(2*n+1)) * A(x)^(n*(n+1)/2).
(3) 1 = Sum_{n>=0} (-1)^(n*(n+1)/2) * A(x)^(n*(n-1)/2) * (1 + A(x)^(2*n+1)) * x^(n*(n+1)/2).
(4) 1 = Product_{n>=1} (1 - (-x)^n*A(x)^n) * (1 + (-x)^(n-1)*A(x)^n) * (1 + (-x)^n*A(x)^(n-1)), by the Jacobi triple product identity.
(5) A(-A(-x)) = x.
a(n) = (-1)^n * Sum_{k=0..2*n+1} A354649(n,k), for n >= 0.
a(n) = -Sum_{k=0..2*n+1} A354650(n,k)*(-1)^k, for n >= 0.